【題目】如圖,將一矩形OABC放在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)Ay軸正半軸上,點(diǎn)E是邊AB上的一個(gè)動(dòng)點(diǎn)不與點(diǎn)A、B重合,過(guò)點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F

的面積為,且,求k的值;

,,反比例函數(shù)的圖象與邊AB、邊BC交于點(diǎn)EF,當(dāng)沿EF折疊,點(diǎn)B恰好落在OC上,求k的值.

【答案】12;(23.

【解析】

1)設(shè),則可得,根據(jù),可得,可得

2)過(guò)E,垂足為D沿EF折疊,點(diǎn)B恰好落在OC上的,根據(jù)點(diǎn)E、F在反比例函數(shù)的圖象上,,,可得,,根據(jù)線段之間的等量關(guān)系可得:,,

根據(jù),易證,可得,

根據(jù)可得出,在中,利用勾股定理可得出k的值.

解:設(shè),則,,

點(diǎn)E在反比例函數(shù)上,

,

的面積為1

,;

答:k的值為:2

過(guò)E,垂足為D,沿EF折疊,點(diǎn)B恰好落在OC上的

,,點(diǎn)EF在反比例函數(shù)的圖象上,

,

,,

,

,

,

,

,

可得:

,

,

中,由勾股定理得:

,解得:,

答:k的值為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+bx軸于點(diǎn)A,交y軸于點(diǎn)B0,1),與反比例函數(shù)的圖象交于點(diǎn)C,C點(diǎn)的橫坐標(biāo)是﹣2

1)求反比例函數(shù)y1的解析式;

2)設(shè)函數(shù)的圖象與的圖象關(guān)于y軸對(duì)稱(chēng),在的圖象上取一點(diǎn)DD點(diǎn)的橫坐標(biāo)大于1),過(guò)D點(diǎn)作DEx軸于點(diǎn)E,若四邊形OBDE的面積為10,求D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店以每件50元的價(jià)格購(gòu)進(jìn)800恤,第一個(gè)月以單價(jià)80元銷(xiāo)售,售出了200件.第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,該商店為增加銷(xiāo)售量決定降價(jià)銷(xiāo)售,根據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多銷(xiāo)售出10件,但最低單價(jià)應(yīng)不低于50元,第二個(gè)月結(jié)束后,該商店對(duì)剩余的T恤一次性清倉(cāng),清倉(cāng)時(shí)單價(jià)為40元.設(shè)第二個(gè)月單價(jià)降低元,

1)填表(用含的代數(shù)式完成表格中的①②③處)

時(shí)間

第一個(gè)月

第二個(gè)月

清倉(cāng)

單價(jià)(元)

80

_______

40

銷(xiāo)售量(件)

200

_______

_______

2)如果該商店希望通過(guò)銷(xiāo)售這800恤獲利9000元,那么第二個(gè)月單價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一商店銷(xiāo)售某種商品,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷(xiāo)售,增加盈利,該店采取了降價(jià)措施,在每件盈利不少于25元的前提下,經(jīng)過(guò)一段時(shí)間銷(xiāo)售,發(fā)現(xiàn)銷(xiāo)售單價(jià)每降低1元,平均每天可多售出2件.

1)若降價(jià)a元,則平均每天銷(xiāo)售數(shù)量為 件.(用含a的代數(shù)式表示)

2)當(dāng)每件商品降價(jià)多少元時(shí),該商店每天銷(xiāo)售利潤(rùn)為1200元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),abc0)與直線l都經(jīng)過(guò)y軸上的同一點(diǎn),且拋物線L的頂點(diǎn)在直線l上,則稱(chēng)次拋物線L與直線l具有一帶一路關(guān)系,并且將直線l叫做拋物線L路線,拋物線L叫做直線l帶線”.

(1)若路線”l的表達(dá)式為y=2x﹣4,它的帶線”L的頂點(diǎn)的橫坐標(biāo)為﹣1,帶線”L的表達(dá)式;

(2)如果拋物線y=mx2﹣2mx+m﹣1與直線y=nx+1具有一帶一路關(guān)系,求m,n的值;

(3)設(shè)(2)中的帶線”L與它的路線”ly軸上的交點(diǎn)為A.已知點(diǎn)P帶線”L上的點(diǎn),當(dāng)以點(diǎn)P為圓心的圓與路線”l相切于點(diǎn)A時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)開(kāi)展了行車(chē)安全,方便居民的活動(dòng),對(duì)地下車(chē)庫(kù)作了改進(jìn).如圖,這小區(qū)原地下車(chē)庫(kù)的入口處有斜坡AC長(zhǎng)為13米,它的坡度為i12.4ABBC,為了居民行車(chē)安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC13°(此時(shí)點(diǎn)B、C、D在同一直線上).

1)求這個(gè)車(chē)庫(kù)的高度AB;

2)求斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離(結(jié)果精確到0.1米).

(參考數(shù)據(jù):sin13°≈0.225cos13°≈0.974,tan13°≈0.231cot13°≈4.331

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目

小敏與同桌小聰討論后進(jìn)行了如下解答:

1特殊情況探索結(jié)論

當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系請(qǐng)你直接寫(xiě)出結(jié)論:AE__________DB,=).

2特例啟發(fā),解答題目

解:題目中,AE與DB的大小關(guān)系是:AE__________DB=).理由如下:

如圖2,過(guò)點(diǎn)E作EFBC,交AC于點(diǎn)F,(請(qǐng)你完成以下解答過(guò)程

3拓展結(jié)論設(shè)計(jì)新題

在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=ECABC的邊長(zhǎng)為1AE=2,求CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某果園有100棵橙子樹(shù),平均每棵結(jié)600個(gè)橙子.現(xiàn)準(zhǔn)備多種一些橙子樹(shù)以提高果園產(chǎn)量,但是如果多種樹(shù),那么樹(shù)之間的距離和每一棵樹(shù)所接受的陽(yáng)光就要減少.根據(jù)經(jīng)驗(yàn)估計(jì),每增種1棵樹(shù),平均每棵樹(shù)就少結(jié)5個(gè)橙子.設(shè)果園增種x棵橙子樹(shù),果園橙子的總產(chǎn)量為y個(gè).

1)求yx之間的關(guān)系式;

2)增種多少棵橙子樹(shù),可以使橙子的總產(chǎn)量在60 420個(gè)以上?

查看答案和解析>>

同步練習(xí)冊(cè)答案