【題目】正方形在平面直角坐標系中,其中三個頂點的坐標分別為,,則第四個頂點的坐標為( )

A. B. C. D.

【答案】B

【解析】

根據(jù)已知三個點的橫縱坐標特征,可設A-2,3),B-2,-2),Cx,y),D3,3),判斷出ABx軸,ADAB,由此可得C點坐標與D點、B點坐標的關系,從而得到C點坐標.

解:設A-2,3),B-2,-2),Cx,y),D33),
由于A點和B點的橫坐標相同,
AB垂直x軸,且AB=5
因為A點和D點縱坐標相同,
ADx軸,且AD=5
ADAB,CDAD
C點的橫坐標與D點的橫坐標相同為3
C點縱坐標與B點縱坐標相同為-2
所以C點坐標為(3,-2).
故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于有理數(shù)a,b,定義一種新運算,規(guī)定ab|a+b|+|ab|

1)計算2⊙(﹣3)的值;

2)當a,b在數(shù)軸上的位置如圖所示時,化簡ab;

3)已知(aa)⊙a8+a,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線BD平分∠ABC,過點AAEBD,交CD的延長線于點E,過點EEFBC,交BC延長線于點F

1)求證:四邊形ABCD是菱形;

2)若∠ABC45°BC2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】春節(jié)期間,七(1)班的李平、王麗等同學隨家長一同到某公園游玩,下面是購買門票時,李平與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:

⑴李平他們一共去了幾個成人,幾個學生?

⑵請你幫助算一算,用哪種方式購票更省錢?說明理由.

⑶購完票后,李平發(fā)現(xiàn)七⑵班的張明等8名同學和他們的12名家長共20人也來購票,請你為他們設計出最省的購票方案,并求出此時的購票費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(初步探究)

1)如圖1,在四邊形ABCD中,∠B=∠C90°,點E是邊BC上一點,ABEC,BECD,連接AE、DE.判斷△AED的形狀,并說明理由.

(解決問題)

2)如圖2,在長方形ABCD中,點P是邊CD上一點,在邊BC、AD上分別作出點EF,使得點FE、P是一個等腰直角三角形的三個頂點,且PEPF,∠FPE90°.要求:僅用圓規(guī)作圖,保留作圖痕跡,不寫作法.

(拓展應用)

3)如圖3,在平面直角坐標系xOy中,已知點A2,0),點B4,1),點C在第一象限內(nèi),若△ABC是等腰直角三角形,則點C的坐標是   

4)如圖4,在平面直角坐標系xOy中,已知點A1,0),點Cy軸上的動點,線段CA繞著點C按逆時針方向旋轉90°至線段CB,CACB,連接BO、BA,則BO+BA的最小值是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中給出4個論斷:①;②;③;④,;現(xiàn)將4個論斷分別粘貼在四個學生的后背上,進行如下游戲:其中三個學生站在講臺的左邊,另一個學生站在講臺的右邊,要求以三個學生后背上的部分論斷作為題設,另一個學生后背上的論斷作為結論,使之成為一個真命題或題目,這個游戲可進行幾輪?并對其中的一種情況進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張長方形紙片分別沿著EP,FP對折,使點B落在點B,點C落在點C.若點P,B,C不在一條直線上,且兩條折痕的夾角∠EPF85°,則∠BPC_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖像交x軸、y軸于A、B兩點

(1)直接寫出A、B兩點的坐標:__________________________。

(2)P為線段AB上一點,PQ//y軸交x軸于C,交雙曲線于Q且四邊形OBPQ為平行四邊形,△OCQ的面積為3

① 求k的值和P點坐標;

② 將△OBP繞點O逆時針旋轉一周,在整個旋轉過程中,P點能否落在雙曲線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+cx軸于A、B兩點,交y軸于C點,其中﹣2<h<﹣1,﹣1<xB<0,下列結論①abc<0;(4a﹣b)(2a+b)<0;4a﹣c<0;④若OC=OB,則(a+1)(c+1)>0,正確的為( 。

A. ①②③④ B. ①②④ C. ①③④ D. ①②③

查看答案和解析>>

同步練習冊答案