【題目】如圖,在四邊形ABCD中,∠ADC=900,∠BAD=600,對角線AC平分∠BAD,且AB=AC=4,點(diǎn)E、F分別是AC、BC的中點(diǎn),連接DE,EF,DF,則DF的長為_______.
【答案】2
【解析】
因?yàn)椤?/span>BAD=600,對角線AC平分∠BAD,求得,因?yàn)辄c(diǎn)E分別是AC的中點(diǎn), 是直角三角形, 根據(jù)直角三角形中線定理求得:AE=EC=DE=2,, 因?yàn)辄c(diǎn)E、F分別是AC、BC的中點(diǎn),根據(jù)中位線定理求得,所以,最后根據(jù)勾股定理即可求解.
∠BAD=600,對角線AC平分∠BAD,
,
點(diǎn)E分別是AC的中點(diǎn), 是直角三角形,
根據(jù)直角三角形中線定理:AE=EC=DE=2,
,
點(diǎn)E、F分別是AC、BC的中點(diǎn),
根據(jù)中位線定理:,
,根據(jù)勾股定理..
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,以AB為直徑的⊙O分別交邊BC、AC于點(diǎn)D、點(diǎn)E,且AE=BE.
(1)如圖①,求∠EBC的度數(shù);
(2)如圖②,過點(diǎn)D作⊙O的切線交AB的延長線于點(diǎn)G,交AC于點(diǎn)F,若⊙O的直徑為10,求BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一個圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個數(shù)學(xué)等式,例如圖1,可以得到這個等式,請解答下列問題:
(1)寫出圖2中所表示的數(shù)學(xué)等式______________;(最后結(jié)果)
(2)根據(jù)整式乘法的運(yùn)算法則,通過計(jì)算驗(yàn)證上述等式;
(3)利用(1)中得到的結(jié)論,解決問題:若a+b+c=10,ab+ac+bc=35,求a2+b2+c2的值;
(4)小明同學(xué)用圖3中x張邊長為a的正方形,y張邊長為b的正方形,z張邊長分別為a、b的長方形紙片拼出一個面積為(5a+2b)(3a+5b)的長方形,求x+y+z的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=120°,在BC上取一點(diǎn)O,以O(shè)為圓心、OB為半徑作圓,且⊙O過A點(diǎn). 如圖①,若⊙O的半徑為5,求線段OC的長;
如圖②,過點(diǎn)A作AD∥BC交⊙O于點(diǎn)D,連接BD,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊△ABC中,點(diǎn)H在邊BC上,點(diǎn)K在邊AC上,且滿足AK=HC,連接AH、BK交于點(diǎn)F.
(1)如圖1,求∠AFB的度數(shù);
(2)如圖2,連接FC,若∠BFC=90°,點(diǎn)G為邊 AC上一點(diǎn),且滿足∠GFC=30°,求證:AG⊥BG
(3)如圖3,在(2)條件下,在BF上取D使得DF=AF,連接CD交AH于E,若△DEF面積為1, 則△AHC的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,AC=BC,D是AB上的一點(diǎn),AE⊥CD于點(diǎn)E,BF⊥CD于點(diǎn)F,若CE=BF,AE=EF+BF.試判斷AC與BC的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com