【題目】如圖,在△ABC中,AB=AC,點(diǎn)DBC的中點(diǎn),點(diǎn)E△ABC內(nèi)一點(diǎn),若∠AEB=∠CED=90°,AE=BE,CE=DE=2,則圖中陰影部分的面積等于__________

【答案】

【解析】

DG⊥BE于G,CF⊥AE于F,可證△DEG≌△CEF,可得DG=CF,則是S△BDE=S△AEC,由D是BC中點(diǎn)可得S△BED=2,即可求得陰影部分面積.

DG⊥BE于G,CF⊥AE于F,

∴∠DGE=∠CFE=90°,

∵∠AEB=∠DEC=90°,

∴∠GED+∠DEF=90°,∠DEF+∠CEF=90°,

∴∠GED=∠CEF,

∵DE=EC,

∴△GDE≌△FCE,

∴DG=CF,

∵S△BED=BEDG,S△BED=AECF,AE=BE,

∴S△BED=S△BED,

D是BC的中點(diǎn)

∴S△BDE=S△EDC==2,

∴S陰影=2+2=4,

故答案為:4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究活動有一圓柱形食品盒,它的高等于8cm,底面直徑為cm,螞蟻爬行的速度為2cm/s

(1)如果在盒內(nèi)下底面的A處有一只螞蟻,它想吃到盒內(nèi)對面中部點(diǎn)B處的食物,那么它至少需要多少時間?(盒的厚度和螞蟻的大小忽略不計(jì),結(jié)果可含根號)

(2)如果在盒外下底面的A處有一只螞蟻,它想吃到盒內(nèi)對面中部點(diǎn)B處的食物,那么它至少需要多少時間?(盒的厚度和螞蟻的大小忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,∠ABC∠ACB的平分線交于點(diǎn)F,過點(diǎn)FDE∥BCAB于點(diǎn)DAC于點(diǎn)E,那么下列結(jié)論中正確的是 ( )

①△BDF△CEF都是等腰三角形

②DE=BD+CE

③△ADE的周長等于ABAC的和

④BF=CF

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點(diǎn)順時針旋轉(zhuǎn)105°至OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為(

A.( ,﹣
B.(﹣ ,
C.(2,﹣2)
D.( ,﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù),增大而增大,它的圖象經(jīng)過點(diǎn)且與軸的夾角為

確定這個一次函數(shù)的解析式;

假設(shè)已知中的一次函數(shù)的圖象沿軸平移兩個單位,求平移以后的直線及直線與軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程,是一元二次方程的是(
①3x2+x=20,②2x2﹣3xy+4=0,③x2 =4,④x2=0,⑤x2﹣3x﹣4=0.
A.①②
B.①②④⑤
C.①③④
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等實(shí)數(shù)根,則k的取值范圍是(
A.k>
B.k≥
C.k> 且k≠1
D.k≥ 且k≠1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸x=﹣1,下列五個代數(shù)式ab、ac、a﹣b+c、b2﹣4ac、2a+b中,值大于0的個數(shù)為(

A.5
B.4
C.3
D.2

查看答案和解析>>

同步練習(xí)冊答案