【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形的圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)

1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是﹣2的概率;

2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

【答案】1;(2

【解析】

1)根據(jù)題意可求得2個“-2”所占的扇形圓心角的度數(shù),再利用概率公式進(jìn)行計算即可得;

2)由題意可得轉(zhuǎn)出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據(jù)概率公式進(jìn)行計算即可得.

1)將標(biāo)有數(shù)字13的扇形兩等分可知轉(zhuǎn)動轉(zhuǎn)盤一次共有6種等可能結(jié)果,其中轉(zhuǎn)出的數(shù)字是﹣2的有2種結(jié)果,

∴轉(zhuǎn)出的數(shù)字是﹣2的概率為;

2)列表如下:

2

2

1

1

3

3

2

4

4

2

2

6

6

2

4

4

2

2

6

6

1

2

2

1

1

3

3

1

2

2

1

1

3

3

3

6

6

3

3

9

9

3

6

6

3

3

9

9

由表可知共有36種等可能結(jié)果,其中數(shù)字之積為正數(shù)的有20種結(jié)果,

∴這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形中,在邊上,.為邊上一動點(不與點重合),連接關(guān)于的軸對稱圖形為

1)當(dāng)點上時,求證:

2)當(dāng)三點共線時,求的長;

3)連接設(shè)的面積為的面積為是否存在最大值?若存在,請直接寫出的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”,已知點、、分別是“果圓”與坐標(biāo)軸的交點,拋物線的解析式為,為半圓的直徑,則這個“果圓”被軸截得的弦的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,,,分別是邊,的中點,在邊上取點,點在邊上,且滿足,連接,作于點于點,線段,,分割成I、II、III、IV四個部分,將這四個部分重新拼接可以得到如圖2所示的矩形,若,則圖1的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,∠B=60°,AB=12,BC=5PAB上任意一點(可以與A、B重合),延長PDF,使得DF=PD,以PF、PC為邊作平行四邊形PCEF,則PE長度的最小值____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提高飲水質(zhì)量越來越多的居民開始選購家用凈水器.一商家抓住商機,從廠家購進(jìn)了AB兩種型號家用凈水器共160,A型號家用凈水器進(jìn)價是150/,B型號家用凈水器進(jìn)價是350/,購進(jìn)兩種型號的家用凈水器共用去36000

1)求AB兩種型號家用凈水器各購進(jìn)了多少臺;

2)為使每臺B型號家用凈水器的毛利潤是A型號的2,且保證售完這160臺家用凈水器的毛利潤不低于11000求每臺A型號家用凈水器的售價至少是多少元?(注毛利潤=售價﹣進(jìn)價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的邊長為4,的中心,.繞點旋轉(zhuǎn),分別交線段兩點,連接,給出下列四個結(jié)論:;;③四邊形的面積始終等于;④△周長的最小值為6,上述結(jié)論中正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,在△ABC中,點O是AC上一點,過點O的直線與AB,BC的延長線分別相交于點M,N.

【問題引入】

(1)若點O是AC的中點, ,求的值;

溫馨提示:過點A作MN的平行線交BN的延長線于點G.

【探索研究】

(2)若點O是AC上任意一點(不與A,C重合),求證: ;

【拓展應(yīng)用】

(3)如圖②所示,點P是△ABC內(nèi)任意一點,射線AP,BP,CP分別交BC,AC,AB于點D,E,F(xiàn).若, ,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為某景區(qū)五個景點A,B,CD,E的平面示意圖,B,AC的正東方向,DC的正北方向,D,EB的北偏西30°方向上,EA的西北方向上,CD相距1000m,EBD的中點處.

(1)求景點B,E之間的距離;

(2)求景點BA之間的距離.(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案