【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形的圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止).
(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是﹣2的概率;
(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
【答案】(1);(2).
【解析】
(1)根據(jù)題意可求得2個“-2”所占的扇形圓心角的度數(shù),再利用概率公式進(jìn)行計算即可得;
(2)由題意可得轉(zhuǎn)出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據(jù)概率公式進(jìn)行計算即可得.
(1)將標(biāo)有數(shù)字1和3的扇形兩等分可知轉(zhuǎn)動轉(zhuǎn)盤一次共有6種等可能結(jié)果,其中轉(zhuǎn)出的數(shù)字是﹣2的有2種結(jié)果,
∴轉(zhuǎn)出的數(shù)字是﹣2的概率為;
(2)列表如下:
﹣2 | ﹣2 | 1 | 1 | 3 | 3 | |
﹣2 | 4 | 4 | ﹣2 | ﹣2 | ﹣6 | ﹣6 |
﹣2 | 4 | 4 | ﹣2 | ﹣2 | ﹣6 | ﹣6 |
1 | ﹣2 | ﹣2 | 1 | 1 | 3 | 3 |
1 | ﹣2 | ﹣2 | 1 | 1 | 3 | 3 |
3 | ﹣6 | ﹣6 | 3 | 3 | 9 | 9 |
3 | ﹣6 | ﹣6 | 3 | 3 | 9 | 9 |
由表可知共有36種等可能結(jié)果,其中數(shù)字之積為正數(shù)的有20種結(jié)果,
∴這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形中,點在邊上,.點為邊上一動點(不與點重合),連接關(guān)于的軸對稱圖形為.
(1)當(dāng)點在上時,求證:;
(2)當(dāng)三點共線時,求的長;
(3)連接設(shè)的面積為的面積為記是否存在最大值?若存在,請直接寫出的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”,已知點、、、分別是“果圓”與坐標(biāo)軸的交點,拋物線的解析式為,為半圓的直徑,則這個“果圓”被軸截得的弦的長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,,分別是邊,的中點,在邊上取點,點在邊上,且滿足,連接,作于點,于點,線段,,將分割成I、II、III、IV四個部分,將這四個部分重新拼接可以得到如圖2所示的矩形,若,則圖1中的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,∠B=60°,AB=12,BC=5,P為AB上任意一點(可以與A、B重合),延長PD到F,使得DF=PD,以PF、PC為邊作平行四邊形PCEF,則PE長度的最小值____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機,從廠家購進(jìn)了A、B兩種型號家用凈水器共160臺,A型號家用凈水器進(jìn)價是150元/臺,B型號家用凈水器進(jìn)價是350元/臺,購進(jìn)兩種型號的家用凈水器共用去36000元.
(1)求A、B兩種型號家用凈水器各購進(jìn)了多少臺;
(2)為使每臺B型號家用凈水器的毛利潤是A型號的2倍,且保證售完這160臺家用凈水器的毛利潤不低于11000元,求每臺A型號家用凈水器的售價至少是多少元?(注:毛利潤=售價﹣進(jìn)價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的邊長為4,點是△的中心,.繞點旋轉(zhuǎn),分別交線段于兩點,連接,給出下列四個結(jié)論:①;②;③四邊形的面積始終等于;④△周長的最小值為6,上述結(jié)論中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,在△ABC中,點O是AC上一點,過點O的直線與AB,BC的延長線分別相交于點M,N.
【問題引入】
(1)若點O是AC的中點, ,求的值;
溫馨提示:過點A作MN的平行線交BN的延長線于點G.
【探索研究】
(2)若點O是AC上任意一點(不與A,C重合),求證: ;
【拓展應(yīng)用】
(3)如圖②所示,點P是△ABC內(nèi)任意一點,射線AP,BP,CP分別交BC,AC,AB于點D,E,F(xiàn).若, ,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某景區(qū)五個景點A,B,C,D,E的平面示意圖,B,A在C的正東方向,D在C的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中點處.
(1)求景點B,E之間的距離;
(2)求景點B,A之間的距離.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com