【題目】 為滿足社區(qū)居民健身的需要,市政府準備采購若干套健身器材免費提供給社區(qū),經考察,勁松公司有兩種型號的健身器可供選擇.
(1)勁松公司2015年每套型健身器的售價為萬元,經過連續(xù)兩年降價,2017年每套售價為 萬元,求每套型健身器年平均下降率 ;
(2)2017年市政府經過招標,決定年內采購并安裝勁松公司兩種型號的健身器材共套,采購專項費總計不超過萬元,采購合同規(guī)定:每套型健身器售價為萬元,每套型健身器售價我 萬元.
①型健身器最多可購買多少套?
②安裝完成后,若每套型和型健身器一年的養(yǎng)護費分別是購買價的 和 .市政府計劃支出 萬元進行養(yǎng)護.問該計劃支出能否滿足一年的養(yǎng)護需要?
【答案】(1)每套A型健身器材年平均下降率n為20%;
(2)①A型健身器材最多可購買40套;②該計劃支出不能滿足養(yǎng)護的需要.
【解析】
試題分析:(1)該每套A型健身器材年平均下降率n,則第一次降價后的單價是原價的(1﹣x),第二次降價后的單價是原價的(1﹣x)2,根據(jù)題意列方程解答即可.
(2)①設A型健身器材可購買m套,則B型健身器材可購買(80﹣m)套,根據(jù)采購專項經費總計不超過112萬元列出不等式并解答;
②設總的養(yǎng)護費用是y元,則根據(jù)題意列出函數(shù)y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.結合函數(shù)圖象的性質進行解答即可.
試題解析:(1)依題意得:2.5(1﹣n)2=1.6,
則(1﹣n)2=0.64,
所以1﹣n=±0.8,
所以n1=0.2=20%,n2=1.8(不合題意,舍去).
答:每套A型健身器材年平均下降率n為20%;
(2)①設A型健身器材可購買m套,則B型健身器材可購買(80﹣m)套,
依題意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,
整理,得
1.6m+96﹣1.2m≤1.2,
解得m≤40,
即A型健身器材最多可購買40套;
②設總的養(yǎng)護費用是y元,則
y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),
∴y=﹣0.1m+14.4.
∵﹣0.1<0,
∴y隨m的增大而減小,
∴m=40時,y最。
∵m=40時,y最小值=﹣01×40+14.4=10.4(萬元).
又∵10萬元<10.4萬元,
∴該計劃支出不能滿足養(yǎng)護的需要.
科目:初中數(shù)學 來源: 題型:
【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是【 】
A.12 B. 24 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是弦,AB⊥CD,垂足為E,點P在⊙O上,連接BP、PD、BC.若CD=,sinP=,則⊙O的直徑為( 。
A. 8 B. 6 C. 5 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發(fā),
沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達終點.連結MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是【 】
A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,點C為 (-1,0).如圖17所示,B點在拋物線圖象上,過點B作BD⊥x軸,垂足為D,且B點橫坐標為-3.
(1)求證:△BDC≌△COA;
(2)求BC所在直線的函數(shù)關系式;
(3)拋物線的對稱軸上是否存在點P,使△ACP是以AC為直角邊的直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,東營市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有_______人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù);
(4)若從對校園安全知識達到“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,等邊△ABC的邊長為3,分別以頂點B、A、C為圓心,BA長為半徑作、、,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形,設點l為對稱軸的交點.
(1)如圖2,將這個圖形的頂點A與線段MN作無滑動的滾動,當它滾動一周后點A與端點N重合,則線段MN的長為 ;
(2)如圖3,將這個圖形的頂點A與等邊△DEF的頂點D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動當它第一次回到起始位置時,求這個圖形在運動過程中所掃過的區(qū)域的面積;
(3)如圖4,將這個圖形的頂點B與⊙O的圓心O重合,⊙O的半徑為3,將它沿⊙O的圓周作無滑動的滾動,當它第n次回到起始位置時,點I所經過的路徑長為 (請用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,點P由C點出發(fā)以2m/s的速度向終點A勻速移動,同時點Q由點B出發(fā)以1m/s的速度向終點C勻速移動,當一個點到達終點時另一個點也隨之停止移動.
(1)經過幾秒△PCQ的面積為△ACB的面積的?
(2)經過幾秒,△PCQ與△ACB相似?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com