【題目】已知:如圖E在△ABC的邊AC上,且∠AEB=∠ABC.

⑴求證:∠ABE=∠C;

⑵若∠BAE的平分線AFBEF,F(xiàn)D∥BCACD,設(shè)AB=5,AC=8,求DC的長.

【答案】(1)證明見解析(2)3

【解析】試題分析:(1∠BAC△ABC△ABE的公共內(nèi)角,根據(jù)三角形內(nèi)角和定理即可證明∠ABE∠C;(2)已知AF平分∠BAE,可得∠BAF=∠DAF,利用(1)所得出的結(jié)論及平行線的性質(zhì)可得∠ABE=∠ADF,根據(jù)“AAS”證得△ABF≌△ADF即可得結(jié)果。

試題解析:(1∵∠ABE=180°∠BAC∠AEB∠C=180°∠BAC∠ABC,且∠AEB=∠ABC

∴∠ABE=∠C

2AF平分∠BAE

∴∠BAF=∠DAF,

FD∥BC,

∴∠ADF=∠C

∠ABE=∠C,

∴∠ABE=∠ADF,

△ABF△ADF

∴△ABF≌△ADF

∴AB=AD=5

∴DC=ACAD=3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-2x與直線ykxb相交于點A(a,2),并且直線ykxb經(jīng)過x軸上點B(2,0)

(1)求直線ykxb的解析式;

(2)求兩條直線與y軸圍成的三角形面積;

(3)直接寫出不等式(k2)xb≥0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店進(jìn)行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付給兩組費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付給兩組費用共3480元,問:

(1)甲、乙兩組單獨工作一天,商店應(yīng)各付多少元?

(2)已知甲組單獨完成需要12天,乙組單獨完成需要24天,單獨請哪組,商店應(yīng)付費用較少?

(3)若裝修完后,商店每天可盈利200元,你認(rèn)為如何安排施工有利用商店經(jīng)營?說說你的理由.(可以直接用(1)(2)中的已知條件)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AB為定點,定直線l//ABPl上一動點.點M,N分別為PAPB的中點,對于下列各值:

線段MN的長;

②△PAB的周長;

③△PMN的面積;

直線MN,AB之間的距離;

⑤∠APB的大小.

其中會隨點P的移動而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2+1)(22+1)(24+1)(28+1)(216+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把點A(3,5)向下平移3個單位長度,再向左平移2個單位長度后,得對應(yīng)點A1的坐標(biāo)是(

A.(12)B.(2,1)C.(1,2)D.(1,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,BD是它的一條對角線,過A、C兩點作AEBD,CFBD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N。

(1求證:四邊形CMAN是平行四邊形。

(2已知DE=4,F(xiàn)N=3,求BN的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校要在圍墻旁建一個長方形的中藥材種植實習(xí)苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設(shè)AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學(xué)校計劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2 , 且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時,請問這個設(shè)計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6張如圖所示的長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影部分表示,設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a、b滿足(

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案