【題目】已知反比例函數(shù) y=的圖象如圖所示,則二次函數(shù) y =ax 2-2x和一次函數(shù) y=bx+a 在同一平面直角坐標(biāo)系中的圖象可能是( )
A.B.C.D.
【答案】C
【解析】
先根據(jù)拋物線(xiàn)y=ax2-2x過(guò)原點(diǎn)排除A,再由反比例函數(shù)圖象確定ab的符號(hào),再由a、b的符號(hào)和拋物線(xiàn)對(duì)稱(chēng)軸確定拋物線(xiàn)與直線(xiàn)y=bx+a的位置關(guān)系,進(jìn)而得解.
∵當(dāng)x=0時(shí),y=ax2-2x=0,即拋物線(xiàn)y=ax2-2x經(jīng)過(guò)原點(diǎn),故A錯(cuò)誤;
∵反比例函數(shù)y=的圖象在第一、三象限,
∴ab>0,即a、b同號(hào),
當(dāng)a<0時(shí),拋物線(xiàn)y=ax2-2x的對(duì)稱(chēng)軸x=<0,對(duì)稱(chēng)軸在y軸左邊,故D錯(cuò)誤;
當(dāng)a>0時(shí),b>0,直線(xiàn)y=bx+a經(jīng)過(guò)第一、二、三象限,故B錯(cuò)誤;
C正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)證明推斷:如圖①,在△ABC中,D,E分別是邊BC,AB的中點(diǎn),AD,CE相交于點(diǎn)G,求證:.
(2)類(lèi)比探究:如圖②,在正方形ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,E為邊BC的中點(diǎn),AE、BD交于點(diǎn)F,若AB=6,求OF的長(zhǎng);
(3)拓展運(yùn)用:若正方形ABCD變?yōu)?/span>□ABCD,如圖③,連結(jié)DE交AC于點(diǎn)G,若四邊形OFEG的面積為,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店經(jīng)銷(xiāo)甲、乙兩種不同的筆記本,已知:兩種筆記本的進(jìn)價(jià)之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,小玲同學(xué)買(mǎi)4本甲種筆記本和3本乙種筆記本共用了47元.
(1)甲、乙兩種筆記本的進(jìn)價(jià)分別是多少元?
(2)該文具店購(gòu)入這兩種筆記本共60本,花費(fèi)不超過(guò)296元,則購(gòu)買(mǎi)甲種筆記本多少本時(shí)文具店獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AB的中點(diǎn),AC<BC.
(1)試用無(wú)刻度的直尺和圓規(guī),在BC上作一點(diǎn)E,使得直線(xiàn)ED平分ABC的周長(zhǎng);(不要求寫(xiě)作法,但要保留作圖痕跡).
(2)在(1)的條件下,若DE分Rt△ABC面積為1﹕2兩部分,請(qǐng)?zhí)骄?/span>AC與BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)對(duì)本校初2017屆500名學(xué)生中中考參加體育加試測(cè)試情況進(jìn)行調(diào)查,根據(jù)男生1000米及女生800米測(cè)試成績(jī)整理,繪制成不完整的統(tǒng)計(jì)圖,(圖①,圖②),根據(jù)統(tǒng)計(jì)圖提供的信息,回答問(wèn)題:
(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計(jì)圖中a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖中,成績(jī)?yōu)?/span>10分的所在扇形的圓心角是 度;
(3)若500名學(xué)生中隨機(jī)抽取一名學(xué)生,這名學(xué)生該項(xiàng)成績(jī)?cè)?/span>8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀理解
如圖,點(diǎn),在反比例函數(shù)的圖象上,連接,取線(xiàn)段的中點(diǎn).分別過(guò)點(diǎn),,作軸的垂線(xiàn),垂足為,,,交反比例函數(shù)的圖象于點(diǎn).點(diǎn),,的橫坐標(biāo)分別為,,.小紅通過(guò)觀察反比例函數(shù)的圖象,并運(yùn)用幾何知識(shí)得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個(gè)關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.
(2)證明命題
小東認(rèn)為:可以通過(guò)“若,則”的思路證明上述命題.
小晴認(rèn)為:可以通過(guò)“若,,且,則”的思路證明上述命題.
請(qǐng)你選擇一種方法證明(1)中的命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面直角坐標(biāo)系,兩點(diǎn)的坐標(biāo)分別為.
(1)若是軸上的一個(gè)動(dòng)點(diǎn),則當(dāng)_______時(shí),的周長(zhǎng)最短;
(2)若是軸上的兩個(gè)動(dòng)點(diǎn),則當(dāng)_______時(shí),四邊形的周長(zhǎng)最短;
(3)設(shè)分別為軸和軸上的動(dòng)點(diǎn),請(qǐng)問(wèn):是否存在這樣的點(diǎn), 使四邊形的周長(zhǎng)最短?若存在,請(qǐng)求出,_________,________(不必寫(xiě)解答過(guò)程);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了提高學(xué)生的綜合素質(zhì),成立了以下社團(tuán):.機(jī)器人,.圍棋,.羽毛球,.電影配音.每人只能加入一個(gè)社團(tuán).為了解學(xué)生參加社團(tuán)的情況,從加社團(tuán)的學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,其中圖中所占扇形的圓心角為.
根據(jù)以上信息,解答下列問(wèn)題:
這次被調(diào)查的學(xué)生共有 人;
請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;
若該校共有學(xué)生加入了社團(tuán),請(qǐng)你估計(jì)這名學(xué)生中有多少人參加了羽毛球社團(tuán);
在機(jī)器人社團(tuán)活動(dòng)中,由于甲、乙、丙、丁四人平時(shí)的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加機(jī)器人大賽.用樹(shù)狀圖或列表法求恰好選中甲、乙兩位同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的二次函數(shù)(>0)的圖象經(jīng)過(guò)點(diǎn)C(0,1),且與軸交于不同的兩點(diǎn)A、B,點(diǎn)A的坐標(biāo)是(1,0).
(1)求c的值和,之間的關(guān)系式;
(2)求的取值范圍;
(3)該二次函數(shù)的圖象與直線(xiàn)交于C、D兩點(diǎn),設(shè) A、B、C、D四點(diǎn)構(gòu)成的四邊形的對(duì)角線(xiàn)相交于點(diǎn)P,記△PCD的面積為S1,△PAB的面積為S2,當(dāng)0<<l時(shí),求證:S1-S2為常數(shù),并求出該常數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com