【題目】為慶祝重慶南開中學(xué)建校83周年暨校運(yùn)動會,我校初二(21)班準(zhǔn)備統(tǒng)一穿初一時(shí)期訂制的服裝參加運(yùn)動會,分別需要增訂“英倫學(xué)院風(fēng)”班服(250/件)、“”運(yùn)動褲(90/件)、“少年的我”短袖恤(40/件)共50件(三種服裝均有增訂),總花費(fèi)6000元,且需要增訂“少年的我”短袖恤的件數(shù)最多,則需要增訂“”運(yùn)動褲__________件.

【答案】17

【解析】

根據(jù)三種服裝共50件,總花費(fèi)6000元,且短袖恤的件數(shù)最多列出方程組及不等式組,然后進(jìn)行整理,用x表示出z,根據(jù)x,z為正整數(shù),且zx,可得x只能為101520,然后逐個(gè)代入驗(yàn)證即可.

解:設(shè)增訂英倫學(xué)院風(fēng)班服x件,運(yùn)動褲y件,少年的我短袖z件,

由題意得:

③-①×9得:,即

x,z為正整數(shù),且zx,

x只能為101520

當(dāng)x=10時(shí),(不符合題意,舍去),

當(dāng)x=15時(shí),y=50-15-18=17,

當(dāng)x=20時(shí),(不符合題意,舍去),

綜上所述,x=15,y=17,z=18,即需要增訂運(yùn)動褲17件,

故答案為:17.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O的直徑AC=2,點(diǎn)B為半圓的中點(diǎn),點(diǎn)D在弦AB上,連結(jié)CD,作BF⊥CD于點(diǎn)E,交AC于點(diǎn)F,連結(jié)DF,當(dāng)△BCE和△DEF相似時(shí),BD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A為函數(shù) 圖象上一點(diǎn),連結(jié)OA,交函數(shù) 的圖象于點(diǎn)B,點(diǎn)Cx軸上一點(diǎn),且AO=AC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的直徑CD=10cm,AB是⊙O的弦,ABCD,垂足為M,且AB=8cm,則AC的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)四邊形的兩條對角線互相垂直且相等,則稱這個(gè)四邊形為“奇妙四邊形”.如圖1,四邊形ABCD中,若AC=BD,ACBD,則稱四邊形ABCD為奇妙四邊形.根據(jù)“奇妙四邊形”對角線互相垂直的特征可得“奇妙四邊形”的一個(gè)重要性質(zhì):“奇妙四邊形”的面積等于兩條對角線乘積的一半.根據(jù)以上信息回答:

(1)矩形 “奇妙四邊形”(填“是”或“不是”);

(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”,若⊙O的半徑為6,∠BCD=60°.求“奇妙四邊形”ABCD的面積;

(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”作OMBCM.請猜測OMAD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB 為半⊙O 的直徑,弦 AC 的延長線與過點(diǎn) B 的切線交于點(diǎn) D,E BD的中點(diǎn),連接 CE.

(1)求證:CE O 的切線;

(2)過點(diǎn) C CF AB ,垂足為點(diǎn) F,AC=5,CF=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB6BC8,點(diǎn)EBC邊上一點(diǎn),連接DE,把△DCE沿DE折疊,使點(diǎn)C落在點(diǎn)C′處,當(dāng)△BEC′為直角三角形時(shí),BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=,∠B=120°,點(diǎn)EAD邊上的一個(gè)動點(diǎn)(不與A,D重合),EF∥ABBC于點(diǎn)F,點(diǎn)GCD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD和正方形EFGC面積分別為6416

1)請寫出點(diǎn)AE,F的坐標(biāo);

2)求SBDF

查看答案和解析>>

同步練習(xí)冊答案