如圖,圓柱的高為12cm,底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上底面B處的食物,則螞蟻經(jīng)過(guò)的最短距離是多少cm?(π取3).
分析:先把圓柱的側(cè)面展開(kāi)得其側(cè)面展開(kāi)圖,則A,B所在的長(zhǎng)方形的長(zhǎng)為圓柱的高12cm,寬為底面圓周長(zhǎng)的一半為πr,螞蟻經(jīng)過(guò)的最短距離為連接A,B的線段長(zhǎng),由勾股定理求得AB的長(zhǎng).
解答:解:如圖,將圓柱的側(cè)面沿過(guò)A點(diǎn)的一條母線剪開(kāi),得到長(zhǎng)方形ADFE,
連接AB,則線段AB的長(zhǎng)就是螞蟻爬行的最短距離,其中C,B分別是AE,DF的中點(diǎn).
∵AD=12cm,DB=πr=3π=9cm(π取3),
∴AB=
AD2+DB2
=
122+92
=15cm.
故螞蟻經(jīng)過(guò)的最短距離為15cm.
點(diǎn)評(píng):本題考查平面展開(kāi)-最短路徑問(wèn)題,解題的關(guān)鍵是計(jì)算出圓柱展開(kāi)后所得長(zhǎng)方形的長(zhǎng)和寬的值,然后用勾股定理進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•西城區(qū)二模)如圖,地上有一圓柱,在圓柱下底面的A點(diǎn)處有一螞蟻,它想沿圓柱表面爬行.吃到上底面上與A點(diǎn)相對(duì)的B點(diǎn)處的食物(π的近似值取3,以下同).
(1)當(dāng)圓柱的高h(yuǎn)=12厘米,底面半徑r=3厘米時(shí),螞蟻沿側(cè)面爬行時(shí)最短路程是多少;
(2)當(dāng)圓柱的高h(yuǎn)=3厘米,底面半徑r=3厘米時(shí),螞蟻沿側(cè)面爬行也可沿AC到上底面爬行時(shí)最短路程是多少;
(3)探究:當(dāng)圓柱的高為h,圓柱底面半徑為r時(shí),螞蟻怎樣爬行的路程最短,路程最短為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,有一個(gè)圓柱,它的高為12厘米,底面半徑為3厘米,在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面B點(diǎn)處的食物,則需要爬行的最短路程是
15
15
厘米.(π的值取3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大八年級(jí)版 2009-2010學(xué)年 第1期 總第157期 北師大版 題型:022

1.如圖,一個(gè)圓柱的底面周長(zhǎng)是10 cm,圓柱的高為12 cm,在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面上與A點(diǎn)相對(duì)的B點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路程是________

解:將圓柱沿側(cè)面AD剪開(kāi),得到如圖所示的側(cè)面展開(kāi)圖,求螞蟻爬行的最短路程,就是求________的長(zhǎng).在RtABC中,∠ACB90°,AC________,BC________,由勾股定理,得AB2AC2BC2________,所以AB________,即螞蟻爬行的最短路程是________

2.在上面求解過(guò)程中,用到的數(shù)學(xué)思想是________思想;在利用勾股定理解決實(shí)際問(wèn)題時(shí),除了這種數(shù)學(xué)思想,還會(huì)用到方程思想、分類思想等.在解決問(wèn)題時(shí)要注意靈活運(yùn)用這些數(shù)學(xué)思想喲!

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,地上有一圓柱,在圓柱下底面的A點(diǎn)處有一螞蟻,它想沿圓柱表面爬行.吃到上底面上與A點(diǎn)相對(duì)的B點(diǎn)處的食物(π的近似值取3,以下同).
(1)當(dāng)圓柱的高h(yuǎn)=12厘米,底面半徑r=3厘米時(shí),螞蟻沿側(cè)面爬行時(shí)最短路程是多少;
(2)當(dāng)圓柱的高h(yuǎn)=3厘米,底面半徑r=3厘米時(shí),螞蟻沿側(cè)面爬行也可沿AC到上底面爬行時(shí)最短路程是多少;
(3)探究:當(dāng)圓柱的高為h,圓柱底面半徑為r時(shí),螞蟻怎樣爬行的路程最短,路程最短為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年北京市西城區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,地上有一圓柱,在圓柱下底面的A點(diǎn)處有一螞蟻,它想沿圓柱表面爬行.吃到上底面上與A點(diǎn)相對(duì)的B點(diǎn)處的食物(π的近似值取3,以下同).
(1)當(dāng)圓柱的高h(yuǎn)=12厘米,底面半徑r=3厘米時(shí),螞蟻沿側(cè)面爬行時(shí)最短路程是多少;
(2)當(dāng)圓柱的高h(yuǎn)=3厘米,底面半徑r=3厘米時(shí),螞蟻沿側(cè)面爬行也可沿AC到上底面爬行時(shí)最短路程是多少;
(3)探究:當(dāng)圓柱的高為h,圓柱底面半徑為r時(shí),螞蟻怎樣爬行的路程最短,路程最短為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案