【題目】已知:ABC,BAC=90°,AB=AC,AE是過(guò)點(diǎn)A的一條直線,BDAED,CEAEE.

(1)當(dāng)直線AE處于如圖①的位置時(shí),BD=DE+CE,請(qǐng)說(shuō)明理由;

(2)當(dāng)直線AE處于如圖②的位置時(shí),BDDE、CE的關(guān)系如何?請(qǐng)說(shuō)明理由;

(3)歸納(1)、(2),請(qǐng)用簡(jiǎn)潔的語(yǔ)言表達(dá)BD、DE、CE之間的關(guān)系.

【答案】1)見(jiàn)解析 (2)見(jiàn)解析 (3BD=DE-CE

【解析】

此題考查了全等三角形的判定與性質(zhì),以及等腰直角三角形的性質(zhì),利用了轉(zhuǎn)化及等量代換的思想,熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.

1)由BD垂直于AE,得到三角形ABD為直角三角形,利用直角三角形兩銳角互余得到一對(duì)角互余,再由∠BAC=90°,得到一對(duì)角互余,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等,AB=AC,利用AAS可得出三角形ABD與三角形ACE全等,由全等三角形的對(duì)應(yīng)邊相等得到AD=CE,BD=AE,由AE=AD+DE,等量代換即可得證;

2)當(dāng)直線AE處于如圖的位置時(shí),則BD、DECE的關(guān)系為BD=DE-CE,理由為:同(1)得出三角形ABD與三角形ACE全等,由全等三角形的對(duì)應(yīng)邊相等得到AD=CE,BD=AE,由AE=DE-AD等量代換即可得證;

3)由(1)(2)總結(jié)得到當(dāng)DE位于直線BC異側(cè)時(shí),BD=DE+CE;當(dāng)D、E位于直線BC同側(cè)時(shí),BD=DE-CE

解:(1)證明:∵BD⊥AECE⊥AE,

∴∠BDA=∠AEC=90°,∴∠ABD+∠BAD=90°

∵∠BAC=90°,∴∠BAD+∠EAC=90°∴∠ABD=∠EAC

△ABD△CAE

∴△ABD≌△CAEAAS

∴AD=CE,BD=AE,

∵AE=AD+DE

∴BD=DE+CE;

2BDDE、CE的關(guān)系為BD=DE-CE,理由為:

證明:在△ABD△CAE

∴△ABD≌△CAEAAS

∴AD=CE,BD=AE,

∵AE=DE-AD,

∴BD=DE-CE;

3)當(dāng)D、E位于直線BC異側(cè)時(shí),BD=DE+CE;當(dāng)D、E位于直線BC同側(cè)時(shí),BD=DE-CE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為活躍校園氣氛,增強(qiáng)班集體凝聚力,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的意識(shí),我校計(jì)劃在初一、初二舉行學(xué)生趣味運(yùn)動(dòng)會(huì).學(xué)校計(jì)劃用不超過(guò)4620元購(gòu)買(mǎi)足球和籃球共28個(gè),分別作為運(yùn)動(dòng)會(huì)團(tuán)體一、二等獎(jiǎng)的獎(jiǎng)品.已知足球單價(jià)180元,籃球單價(jià)160元.

1)學(xué)校至多可購(gòu)買(mǎi)多少個(gè)足球?

2)為了鼓勵(lì)更多班級(jí)參與運(yùn)動(dòng),學(xué)校決定在計(jì)劃經(jīng)費(fèi)內(nèi),按(1)問(wèn)的結(jié)果購(gòu)買(mǎi)足球作為一等獎(jiǎng)獎(jiǎng)品.購(gòu)買(mǎi)獎(jiǎng)品時(shí)正好趕上商場(chǎng)對(duì)商品價(jià)格進(jìn)行調(diào)整,足球單價(jià)上漲了a%,籃球單價(jià)下降了 a%,最終恰好比計(jì)劃經(jīng)費(fèi)的最大值節(jié)余了196元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由不同生產(chǎn)商提供套校服參加比選,甲、乙、兩三個(gè)同學(xué)分別參加比選,比選后結(jié)果是:每套校服至少有一人選中,且每人都選中了其中的套校服.如果將其中只有人選中的校服稱作“不受歡迎校服”,人選中的校服稱作“頗受歡迎校服”,人都選中的校服稱作“最受歡迎校服”,則“不受歡迎校服”比“最受歡迎校服”多________________套.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1)

(2)(配方法)

(3)(用公式法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.如圖所示,已知△ABC和△BDE都是等邊三角形,下列結(jié)論:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等邊三角形;⑥FG∥AD,其中正確的有( )

A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BACDEABE,則下列結(jié)論.AD平分∠CDE;②∠BAC=BDE;③DE平分∠ADB;④BE+AC=AB,其中正確的是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在Rt△ABC中,∠ACB=90°,AB=6,過(guò)點(diǎn)C的直線MN∥AB,DAB上一點(diǎn),過(guò)點(diǎn)DDE⊥BC,交直線MN于點(diǎn)E,垂足為F,連結(jié)CD,BE,

(1)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由

(2)在(1)的條件下,當(dāng)∠A=   時(shí)四邊形BECD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線ACBD交于點(diǎn)O.過(guò)點(diǎn)CBD的平行線,過(guò)點(diǎn)DAC的平行線,兩直線相交于點(diǎn)E.

(1)求證:四邊形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC的邊BC在直線l上,ACBC,且ACBC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EFFP(備注:當(dāng)EFFP,∠EFP=90°時(shí),∠PEF=∠FPE=45°,反之當(dāng)∠PEF=∠FPE=45°時(shí),當(dāng)EFFP).

(1)在圖1中,請(qǐng)你通過(guò)觀察、測(cè)量、猜想并寫(xiě)出ABAP所滿足的數(shù)量關(guān)系和位置關(guān)系.

(2)將△EFP沿直線l向左平移到圖2的位置時(shí),EPAC于點(diǎn)Q,連接APBQ.猜想并寫(xiě)出BQAP所滿足的數(shù)量關(guān)系和位置關(guān)系,并證明你的猜想;

(3)將△EFP沿直線l向左平移到圖3的位置時(shí),EP的延長(zhǎng)線交AC的延長(zhǎng)線于點(diǎn)Q,連接AP、BQ.你認(rèn)為(2)中所猜想的BQAP的結(jié)論還成立嗎?若成立,給出證明:若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案