【題目】已知一個(gè)矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn)A(11,0),點(diǎn)B(0,6),點(diǎn)P為BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),經(jīng)過點(diǎn)O、P折疊該紙片,得點(diǎn)B′和折痕OP.設(shè)BP=t.
(Ⅰ)如圖①,當(dāng)∠BOP=300時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)如圖②,經(jīng)過點(diǎn)P再次折疊紙片,使點(diǎn)C落在直線PB′上,得點(diǎn)C′和折痕PQ,若AQ=m,試用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)C′恰好落在邊OA上時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).
【答案】(Ⅰ)根據(jù)題意,∠OBP=90°,OB=6。
在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t。
∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=,t2=-(舍去).
∴點(diǎn)P的坐標(biāo)為( ,6)。
(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,
∴△OB′P≌△OBP,△QC′P≌△QCP。
∴∠OPB′=∠OPB,∠QPC′=∠QPC。
∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°。
∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ。
又∵∠OBP=∠C=90°,∴△OBP∽△PCQ。∴。
由題意設(shè)BP=t,AQ=m,BC=11,AC=6,則PC=11-t,CQ=6-m.
∴!(0<t<11)。
(Ⅲ)點(diǎn)P的坐標(biāo)為(,6)或(,6)。
【解析】(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案。
(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,
△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對(duì)應(yīng)邊成比例,即可求得答案。
(Ⅲ)首先過點(diǎn)P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長(zhǎng),然后利用相似三角形的對(duì)應(yīng)邊成比例與,即可求得t的值:
過點(diǎn)P作PE⊥OA于E,∴∠PEA=∠QAC′=90°。
∴∠PC′E+∠EPC′=90°。
∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A。
∴△PC′E∽△C′QA!。
∵PC′=PC=11-t,PE=OB=6,AQ=m,C′Q=CQ=6-m,
∴。
∴。
∵,即,∴,即。
將代入,并化簡(jiǎn),得。解得:。
∴點(diǎn)P的坐標(biāo)為(,6)或(,6)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD≌△CDB,且AB,CD是對(duì)應(yīng)邊.下面四個(gè)結(jié)論中不正確的是( )
A. △ABD和△CDB的面積相等B. △ABD和△CDB的周長(zhǎng)相等
C. ∠A+∠ABD=∠C+∠CBDD. AD∥BC,且AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)O,A,B,M均在格點(diǎn)上,P為線段OM上的一個(gè)動(dòng)點(diǎn).
(1)OM的長(zhǎng)等于_______;
(2)當(dāng)點(diǎn)P在線段OM上運(yùn)動(dòng),且使PA2+PB2取得最小值時(shí),請(qǐng)借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點(diǎn)P的位置,并簡(jiǎn)要說明你是怎么畫的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(diǎn)(點(diǎn)A除外),直線BP交⊙O于點(diǎn)Q,過Q作⊙O的切線交射線OA于點(diǎn)E.
(1)如圖①,點(diǎn)P在線段OA上,若∠OBQ=15°,求∠AQE的大;
(2)如圖②,點(diǎn)P在OA的延長(zhǎng)線上,若∠OBQ=65°,求∠AQE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點(diǎn)、處要安裝兩盞警示燈,則這兩盞燈的水平距離是____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn),則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的____(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)就餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.
(1)這次被調(diào)查的同學(xué)共有名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)計(jì)算在扇形統(tǒng)計(jì)圖中剩大量飯菜所對(duì)應(yīng)扇形圓心角的度數(shù);
(4)校學(xué)生會(huì)通過數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐.據(jù)此估算,該校20000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com