星期天,小明在解答下列題目時卡殼了.
題目1:如圖①,在△ABC中,AC=BC,∠ACB=90°,O為△ABC內(nèi)的一點,OC=1,OA=,OB=.求∠AOC的度數(shù).
小明去請教小穎正在解答下列題目.
題目2:如圖②,點O是等邊三角形ABC內(nèi)的一點,將△BCO繞C順時針方向旋轉(zhuǎn)60°得到△ADC,連接OD.
(1)試判斷△COD的形狀,并說明理由;
(2)當(dāng)∠COB=150°時,試判斷△AOD的形狀,并寫出OA、OB、OC三者之間的等量關(guān)系式.
小穎說:“等等,等我做完了,我們一起來看.”小明看完,小穎做完后高興地說:“哈哈,太好了,我會了.”聰明的同學(xué),你能先解答完題目2,再根據(jù)解答所得到的啟迪來完成題目1嗎?寫出你的解答過程.

【答案】分析:題目2:(1)根據(jù)有一個角為60°的等腰三角形是等邊三角形直接進(jìn)行判定即可;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì),得到△BOC≌△ADC,從而求出∠ADC的度數(shù),OB=AD,再根據(jù)等邊三角形的性質(zhì)得∠ODC=60°,OC=OD,即∠ADO=90°,即可以判斷△AOD的形狀,及OA、OB、OC三者之間的等量關(guān)系式.
題目1:根據(jù)題目2的方法,將△BCO繞C順時針方向旋轉(zhuǎn)90°得到△ADC,連接OD,可得到△BOC≌△ADC,即∠OC=CD=1,OB=AD=,再利用等腰直角三角形的性質(zhì)得出∠COD的度數(shù);
最后利用勾股定理的逆定理證明△AOD是直角三角形,易得∠AOC的度數(shù).
解答:解:(1)證明:∵CO=CD,∠OCD=60°,
∴△COD是等邊三角形;
(2)解:當(dāng)∠BOC=150°時,△AOD是直角三角形.
∵△BCO繞C順時針方向旋轉(zhuǎn)60°得到△ADC,
∴△BOC≌△ADC,
∴∠ADC=∠BOC=150°,OB=AD,
又∵△COD是等邊三角形,
∴∠ODC=60°,OC=OD
∴∠ADO=90°,
即△AOD是直角三角形;
∴OA2=OD2+AD2,
∴OA2=OC2+AO2;
解題目1:
解:將△BCO繞C順時針方向旋轉(zhuǎn)90°得到△ADC,連接OD,如圖,
∴△BOC≌△ADC,
∴OC=CD=1,OB=AD=,
∵∠OCD=90°且OC=CD=1,
∴∠COD=45°,OD=
又∵OA=,
∴AD2=OA2+OD2
∴∠AOD=90°
∴∠AOC=∠COD+∠AOD=135°.
點評:本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識.注意此題有一定的開放性,要找到變化中的不變量才能有效解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•清流縣質(zhì)檢)星期天,小明在解答下列題目時卡殼了.
題目1:如圖①,在△ABC中,AC=BC,∠ACB=90°,O為△ABC內(nèi)的一點,OC=1,OA=
3
,OB=
5
.求∠AOC的度數(shù).
小明去請教小穎正在解答下列題目.
題目2:如圖②,點O是等邊三角形ABC內(nèi)的一點,將△BCO繞C順時針方向旋轉(zhuǎn)60°得到△ADC,連接OD.
(1)試判斷△COD的形狀,并說明理由;
(2)當(dāng)∠COB=150°時,試判斷△AOD的形狀,并寫出OA、OB、OC三者之間的等量關(guān)系式.
小穎說:“等等,等我做完了,我們一起來看.”小明看完,小穎做完后高興地說:“哈哈,太好了,我會了.”聰明的同學(xué),你能先解答完題目2,再根據(jù)解答所得到的啟迪來完成題目1嗎?寫出你的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•益陽)已知:如圖,拋物線y=a(x-1)2+c與x軸交于點A(1-
3
,0)和點B,將拋物線沿x軸向上翻折,頂點P落在點P'(1,3)處.
(1)求原拋物線的解析式;
(2)學(xué)校舉行班徽設(shè)計比賽,九年級5班的小明在解答此題時頓生靈感:過點P'作x軸的平行線交拋物線于C、D兩點,將翻折后得到的新圖象在直線CD以上的部分去掉,設(shè)計成一個“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠(yuǎn);而且小明通過計算驚奇的發(fā)現(xiàn)這個“W”圖案的高與寬(CD)的比非常接近黃金分割比
5
-1
2
(約等于0.618).請你計算這個“W”圖案的高與寬的比到底是多少?(參考數(shù)據(jù):
5
≈2.236
,
6
≈2.449
,結(jié)果可保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧化縣質(zhì)檢)已知:如圖,拋物線y=ax2+bx+c與x軸交于點A(1-
3
,0)和點B,將拋物線沿x軸向上翻折,頂點P落在點P′(1,3)處.
(1)求原拋物線的解析式;
(2)在原拋物線上,是否存在一點,與它關(guān)于原點對稱的點也在該拋物線上?若存在,求滿足條件的點的坐標(biāo);若不存在,說明理由.
(3)學(xué)校舉行班徽設(shè)計比賽,九年級(5)班的小明在解答此題時頓生靈感:過點P′作x軸的平行線交拋物線于C、D兩點,將翻折后得到的新圖象在直線CD以上的部分去掉,設(shè)計成一個“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠(yuǎn);而且小明通過計算驚奇的發(fā)現(xiàn)這個“W”圖案的高與寬(CD)的比非常接近黃金分割比
5
-1
2
(約等于0.618).請你計算這個“W”圖案的高與寬的比到底是多少?(參考數(shù)據(jù):
5
≈2.236
6
≈2.449
,結(jié)果精確到0.001)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

星期天,小明在解答下列題目時卡殼了.
題目1:如圖①,在△ABC中,AC=BC,∠ACB=90°,O為△ABC內(nèi)的一點,OC=1,OA=數(shù)學(xué)公式,OB=數(shù)學(xué)公式.求∠AOC的度數(shù).
小明去請教小穎正在解答下列題目.
題目2:如圖②,點O是等邊三角形ABC內(nèi)的一點,將△BCO繞C順時針方向旋轉(zhuǎn)60°得到△ADC,連接OD.
(1)試判斷△COD的形狀,并說明理由;
(2)當(dāng)∠COB=150°時,試判斷△AOD的形狀,并寫出OA、OB、OC三者之間的等量關(guān)系式.
小穎說:“等等,等我做完了,我們一起來看.”小明看完,小穎做完后高興地說:“哈哈,太好了,我會了.”聰明的同學(xué),你能先解答完題目2,再根據(jù)解答所得到的啟迪來完成題目1嗎?寫出你的解答過程.

查看答案和解析>>

同步練習(xí)冊答案