【題目】如圖,△ABC是等邊三角形,△ABD是等腰直角三角形,∠BAD=90°,AEBD于點(diǎn)E,連CD分別交AE,AB于點(diǎn)F,G,過(guò)點(diǎn)AAHCDBD于點(diǎn)H.則下列結(jié)論:①∠ADC=15°;AF=AG;AH=DF;④△AFG∽△CBG;AF=(﹣1)EF.其中正確結(jié)論的個(gè)數(shù)為( 。

A. 5 B. 4 C. 3 D. 2

【答案】B

【解析】

根據(jù)ABC為等邊三角形,ABD為等腰直角三角形的性質(zhì),以及頂角∠CAD=150°,即可判斷,②求出的度數(shù)即可判斷. ③證明

ADF≌△BAH即可判斷,④根據(jù)兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似即可判斷.

⑤設(shè),則根據(jù)相似三角形的判定與性質(zhì)即可得出結(jié)論.

∵△ABC為等邊三角形,ABD為等腰直角三角形,

∴∠BAC=60°、

是等腰三角形,且頂角∠CAD=150°,

∴∠ADC=15°,故①正確;

AEBD,即∠AED=90°,

故②錯(cuò)誤;

AHCD的交點(diǎn)為P,

且∠AFG=60°知∠FAP=30°,

ADFBAH中,

∴△ADF≌△BAH(ASA),

,故③正確;

,故④正確;

中,設(shè),則

設(shè)

∵△ADF≌△BAH

ABE中,∵

整理,得:

x≠0 故⑤正確;

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,AB=AC,BAC=90°,AE是過(guò)A點(diǎn)的一條直線,且B,CAE的異側(cè),BDAED,CEAEE.

(1)ABDCAE全等嗎?BDDE+CE相等嗎?請(qǐng)說(shuō)明理由。

(2)如圖2,若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖②所示的位置(BD<CE)時(shí),其余條件不變,則BDDE、CE的關(guān)系如何?請(qǐng)說(shuō)明理由

(3)如圖3,若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖③所示的位置(BD>CE)時(shí),其余條件不變,則BDDE、CE的關(guān)系如何?

(4)根據(jù)以上的討論,請(qǐng)用簡(jiǎn)潔的語(yǔ)言表達(dá)BDDE、CE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖的中,,且上一點(diǎn).今打算在上找一點(diǎn),在上找一點(diǎn),使得全等,以下是甲、乙兩人的作法:

(甲)連接,作的中垂線分別交、點(diǎn)、點(diǎn),則、兩點(diǎn)即為所求

(乙)過(guò)作與平行的直線交點(diǎn),過(guò)作與平行的直線交點(diǎn),則、兩點(diǎn)即為所求

對(duì)于甲、乙兩人的作法,下列判斷何者正確?(  )

A. 兩人皆正確B. 兩人皆錯(cuò)誤

C. 甲正確,乙錯(cuò)誤D. 甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn).

(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DEDF,求證:BE=AF;

(2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DEDF,那么BE=AF嗎?請(qǐng)利用圖②說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知二次函數(shù)y=k(x﹣ax﹣b),其中a≠b.

(1)若此二次函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,k),試求a,b滿足的關(guān)系式.

(2)若此二次函數(shù)和函數(shù)y=x2﹣2x的圖象關(guān)于直線x=2對(duì)稱(chēng),求該函數(shù)的表達(dá)式.

(3)若a+b=4,且當(dāng)0≤x≤3時(shí),有1≤y≤4,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠BAC90°,ABAC.點(diǎn)D從點(diǎn)B出發(fā)沿射線BC移動(dòng),以AD為邊在AB的右側(cè)作ADE,且∠DAE90°,ADAE.連接CE

1)如圖1,若點(diǎn)DBC邊上,則∠BCE  °;

2)如圖2,若點(diǎn)DBC的延長(zhǎng)線上運(yùn)動(dòng).

①∠BCE的度數(shù)是否發(fā)生變化?請(qǐng)說(shuō)明理由;

②若BC3,CD6,則ADE的面積為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)利用直尺完成下列問(wèn)題

1)如圖(1)示,利用網(wǎng)格畫(huà)圖:

①在BC上找一點(diǎn)P,使得PABAC的距離相等;

②在射線AP上找一點(diǎn)Q,使QBQC

2)如圖(2)示,點(diǎn)AB,C都在方格紙的格點(diǎn)上.請(qǐng)你再找一個(gè)格點(diǎn)D,使點(diǎn)AB,C,D組成一個(gè)軸對(duì)稱(chēng)圖形,請(qǐng)?jiān)趫D中標(biāo)出滿足條件的所有點(diǎn)D的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC△ECD都是等邊三角形,B、C、D三點(diǎn)在一條直線上,ADBE相交于點(diǎn)OADCE相交于點(diǎn)F,ACBE相交于點(diǎn)G

1△BCE△ACD全等嗎?請(qǐng)說(shuō)明理由.

2)求∠BOD度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD垂直平分OA,垂足為點(diǎn)M,連接并延長(zhǎng)CO交⊙O于點(diǎn)E,分別連接DE,BE,DB,其中∠EDB=30°,CDE的平分線DNCE于點(diǎn)G,交⊙O于點(diǎn)N,延長(zhǎng)CE至點(diǎn)F,使FG=FD.

(1)求證:DF是⊙O的切線;

(2)若⊙O半徑r8,求線段DB,BE與劣弧DE所圍成的陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案