【題目】如圖,AB、AC分別是⊙O的直徑和弦,點(diǎn)D為劣弧AC上一點(diǎn),弦DE⊥AB分別交⊙O于E,交AB于H,交AC于F.P是ED延長線上一點(diǎn)且PC=PF.
(1) 求證:PC是⊙O的切線;
(2) 點(diǎn)D在劣弧AC什么位置時,才能使,為什么?
(3) 在(2)的條件下,若OH=1,AH=2,求弦AC的長.
【答案】(1)證明見解析;(2)點(diǎn)D在劣弧AC中點(diǎn)位置時,才能使,理由見解析;(3)4.
【解析】
(1)連結(jié)OC,證明∠OCP=90°即可;
(2)乘積的形式可以轉(zhuǎn)化為比例的形式,通過證明三角形相似得出;
(3)可以先根據(jù)勾股定理得出DH,再通過證明△OGA≌△OHD,得出AC=2AG=2DH,求出弦AC的長.
(1)證明:連結(jié)OC
∵PC=PF,OA=OC
∴∠PCA=∠PFC,∠OCA=∠OAC
∵∠PFC=∠AFH,DE⊥AB
∴∠AHF=90°
∴∠PCO=∠PCA+∠ACO=∠AFH+∠FAH=90°
∴PC是⊙O的切線.
(2)解:點(diǎn)D在劣弧AC中點(diǎn)位置時,才能使,理由如下:
連結(jié)AE
∵點(diǎn)D在劣弧AC中點(diǎn)位置
∴∠DAF=∠DEA
∵∠ADE=∠ADE
∴△DAF∽△DEA
∴AD∶DE=DF∶AD
∴
(3)解:連結(jié)OD交AC于G
∵OH=1,AH=2
∴OA=3
即OD=3
∴DH=
∵點(diǎn)D在劣弧AC中點(diǎn)位置
∴AC⊥DO
∴∠OGA=∠OHD=90°
在△OGA和△OHD中,
∴△OGA≌△OHD(AAS)
∴AG=DH
∴AC=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市中招體育測試改革,其中籃球和足球作為選考項目,某商店抓住這一商機(jī)決定購進(jìn)一批籃球和足球共200個,這兩種球的進(jìn)價和售價如下表所示:
籃球 | 足球 | |
進(jìn)價(元/個) | 180 | 150 |
售價(元/個) | 250 | 200 |
(1)若商店計劃銷售完這批球后能獲利11600元,問籃球和足球應(yīng)分別購進(jìn)多少個?
(2)設(shè)購進(jìn)籃球個,獲利為元,求與之間的函數(shù)關(guān)系;
(3)若商店計劃投入資金不多于31560元且銷售完這批球后商店獲利不少于11000元,請問有哪幾種購球方案,并寫出獲利最大的購球方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組想利用所學(xué)的知識了解某廣告牌的高度,已知CD=2m.經(jīng)測量,得到其它數(shù)據(jù)如圖所示.其中∠CAH=37°,∠DBH=67°,AB=10m,請你根據(jù)以上數(shù)據(jù)計算GH的長.(參考數(shù)據(jù),,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求此反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】配餐公司為某學(xué)校提供A、B、C三類午餐供師生選擇,三類午餐每份的價格分別是:A餐5元,B餐6元,C餐8元.為做好下階段的營銷工作,配餐公司根據(jù)該校上周A、B、C三類午餐購買情況,將所得的數(shù)據(jù)處理后,制成統(tǒng)計表(如下左圖);根據(jù)以往銷售量與平均每份利潤之間的關(guān)系,制成統(tǒng)計圖(如下右圖).
請根據(jù)以上信息,解答下列問題:
(1)該校師生上周購買午餐費(fèi)用的眾數(shù)是 元;
(2)配餐公司上周在該校銷售B餐每份的利潤大約是 元;
(3)請你計算配餐公司上周在該校銷售午餐約盈利多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)從點(diǎn)出發(fā)以每秒2個單位的速度沿向終點(diǎn)運(yùn)動,過點(diǎn)作的垂線交折線于點(diǎn),當(dāng)點(diǎn)不和的頂點(diǎn)重合時,以為邊作等邊三角形,使點(diǎn)和點(diǎn)在直線的同側(cè),設(shè)點(diǎn)的運(yùn)動時間為(秒).
(1)求等邊三角形的邊長(用含的代數(shù)式表示);
(2)當(dāng)點(diǎn)落在的邊上時,求的值;
(3)設(shè)與重合部分圖形的面積為,求與的函數(shù)關(guān)系式;
(4)作直線,設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn)分別為,直接寫出時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郴州市正在創(chuàng)建“全國文明城市”,某校擬舉辦“創(chuàng)文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.
(1)A、B兩種獎品每件各多少元?
(2)現(xiàn)要購買A、B兩種獎品共100件,總費(fèi)用不超過900元,那么A種獎品最多購買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在AD邊上,點(diǎn)F在AD的延長線上,且BE=CF.
(1)求證:四邊形EBCF是平行四邊形.
(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)在線段上,.點(diǎn)從點(diǎn)出發(fā),沿方向運(yùn)動,以為直徑作,當(dāng)運(yùn)動到點(diǎn)時停止運(yùn)動,設(shè).
(1)___________,___________.(用的代數(shù)式表示)
(2)當(dāng)為何值時,與的一邊相切?
(3)在點(diǎn)整個運(yùn)動過程中,過點(diǎn)作的切線交折線于點(diǎn),將線段繞點(diǎn)順時針旋轉(zhuǎn)得到,過作于.
①當(dāng)線段長度達(dá)到最大時,求的值;
②直接寫出點(diǎn)所經(jīng)過的路徑長是________.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com