【題目】如圖所示,在平面直角坐標系中,A(1,5)B(1,0)C(4,3)

1)直接寫出△ABC的面積為_________

2)在圖形中作出△ABC關(guān)于x軸的對稱圖形△A1B1C1

3)若△DAB與△CAB全等(D點不與C點重合),則點D的坐標為__________

【答案】1;(2)見解析;(3)(-4,2),(2,3),(2,2.

【解析】

1)由題得出AB的長及點CAB的距離,根據(jù)三角形面積公式計算即可;

2)分別作AB、C三點關(guān)于x軸的對稱點A1、B1C1,然后連接A1、B1C1即可;

3)由于AB為公共邊,再根據(jù)全等三角形的性質(zhì)得出D點位置,寫出坐標即可.

1)由題知AB=5,點CAB的距離為3,

SABC=5×3×;

2)分別作A、B、C三點關(guān)于x軸的對稱點A1、B1、C1,然后連接A1、B1、C1,即為△ABC關(guān)于x軸的對稱圖形△A1B1C1,如圖所示:

3)由于AB為公共邊,點C距離AB3個單位長度,,,

DAB左側(cè)時,滿足條件的為(-4,2),

DAB左側(cè)時,滿足條件的為(2,3),(2,2),

△DAB△CAB全等(D點不與C點重合),則點D的坐標為(-4,2),(2,3),(2,2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對1235歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.

請根據(jù)圖中的信息,回答下列問題:

1)這次抽樣調(diào)查中共調(diào)查了 人,并請補全條形統(tǒng)計圖;

2)扇形統(tǒng)計圖中1823歲部分的圓心角的度數(shù)是 度;

3)據(jù)報道,目前我國1235歲網(wǎng)癮人數(shù)約為3600萬,請估計其中1223歲的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,EDC邊上一個動點,FAB邊上一點,∠AEF=30°.設(shè)DE=x,圖中某條線段長為y,yx滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的(  ).

A. 線段EC B. 線段AE C. 線段EF D. 線段BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在數(shù)軸上分別表示.

1)對照數(shù)軸填寫下表:

5

3

2

0

2

兩點的距離

3

7

________

4

________

0

2)若兩點間的距離記為,試問有何數(shù)量關(guān)系?

3)數(shù)軸上的整數(shù)點為,它到3的距離之和為7,寫出這些整數(shù).

4)若點表示的數(shù)為,當點在什么位置時,取得的值最?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AC上取點B,在其同一側(cè)作兩個等邊三角形ABD BCE ,連接AECDGF,下列結(jié)論正確的有(

AE DC;②AHC120;③AGB≌△DFB;④BH平分AHC;⑤GFAC

A.①②④B.①③⑤C.①③④⑤D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為開展校園讀書活動,雅禮中學讀書會計劃采購數(shù)學文化和文學名著兩類書籍共100. 經(jīng)了解,購買20 本數(shù)學文化和50本文學名著共需1700元, 30本數(shù)學文化比30本文學名著貴450 . (注:所采購的同類書籍價格都一樣)

1)求每本數(shù)學文化和文學名著的價格;

2)若校園讀書會要求購買數(shù)學文化本數(shù)不少于文學名著,且總費用不超過2780元,請求出所有符合條件的購書方案。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC是等邊三角形,點E、F分別為射線AC、射線CB上兩點,CE=BF,直線EB、AF交于點D.

1)當E、F在邊AC、BC上時如圖,求證:△ABF≌△BCE.

2)當EAC延長線上時,如圖,AC=10,SABC=25EGBCG,EHABH,HE=8EG= .

3E、F分別在AC、CB延長線上時,如圖,BE上有一點P,CP=BD,CPB是銳角,求證:BP=AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,1+2=180°,∠3=B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.

C與∠AED相等,理由如下:

∵∠1+2=180°(已知),1+DFE=180°(鄰補角定義)

∴∠2=___(___),

ABEF(___)

∵∠3=___(___)

又∠B=3(已知)

∴∠B=___(等量代換)

DEBC(___)

∴∠C=AED(___).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,若,則還需添加的一個條件有( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案