【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣4經(jīng)過點(diǎn)A(﹣8,0),對(duì)稱軸是直線x=﹣3,點(diǎn)B是拋物線與y軸交點(diǎn),點(diǎn)M、N同時(shí)從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度分別沿x軸的負(fù)半軸、y的負(fù)半軸方向勻速運(yùn)動(dòng),(當(dāng)點(diǎn)N到達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng)).過點(diǎn)M作x軸的垂線,交直線AB于點(diǎn)C,連接CN、MN,并作△CMN關(guān)于直線MC的對(duì)稱圖形,得到△CMD.設(shè)點(diǎn)N運(yùn)動(dòng)的時(shí)間為t秒,△CMD與△AOB重疊部分的面積為S.
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)0<t<2時(shí),
①求S與t的函數(shù)關(guān)系式.
②直接寫出當(dāng)t=_____時(shí),四邊形CDMN為正方形.
(3)當(dāng)點(diǎn)D落在邊AB上時(shí),過點(diǎn)C作直線EF交拋物線于點(diǎn)E,交x軸于點(diǎn)F,連接EB,當(dāng)S△CBE:S△ACF=1:3時(shí),直接寫出點(diǎn)E的坐標(biāo)為______.
【答案】(1)y=x2+x﹣4;(2)①S=﹣t2+2t;②;(3)(﹣4,﹣6)或(﹣2,﹣6).
【解析】
(1)拋物線y=ax2+bx﹣4經(jīng)過點(diǎn)A(﹣8,0),對(duì)稱軸是直線x=﹣3,則拋物線與x軸另外一個(gè)交點(diǎn)坐標(biāo)為:(2,0),則拋物線的表達(dá)式為:y=a(x+8)(x﹣2)=a(x2+6x﹣16),根據(jù)x=0時(shí)y=-4可得﹣16a=﹣4,解得:a=,即可求解;(2)①根據(jù)OM=ON=t可得AM=8﹣t,由MC∥y軸,根據(jù)平行線分線段成比例定理可得,可得MC=(8﹣t),進(jìn)而可得S=S△MCN=MC×t=﹣t2+2t;②根據(jù)MC=ND=2t,即可求解;(3)過點(diǎn)E、F分別作AB的垂線交AB于點(diǎn)G、H,利用待定系數(shù)法可得直線AB的解析式,根據(jù)對(duì)稱性質(zhì)可得DM=MN=t,可證明△DMN是等腰直角三角形,可得DN=MN,即可求出t值,可得點(diǎn)C(﹣2,﹣3),即可得出AC=3BC,根據(jù)S△CBE:S△ACF=1:3,可得EG=FH,利用AAS可證明△FHC≌△EGC,可得FC=EC,故點(diǎn)C是EF的中點(diǎn),設(shè)F(m,0),根據(jù)中點(diǎn)坐標(biāo)公式可用m表示出E點(diǎn)坐標(biāo),代入二次函數(shù)解析式即可求出m的值,可得E點(diǎn)坐標(biāo).
(1)∵拋物線y=ax2+bx﹣4經(jīng)過點(diǎn)A(﹣8,0),對(duì)稱軸是直線x=﹣3,
∴拋物線與x軸另外一個(gè)交點(diǎn)坐標(biāo)為(2,0),
∴拋物線的表達(dá)式為:y=a(x+8)(x﹣2)=a(x2+6x﹣16),
∵點(diǎn)B是拋物線與y軸交點(diǎn),
∴B(0,4),
∴﹣16a=﹣4,
解得:a=,
∴拋物線的表達(dá)式為:y=x2+x﹣4.
(2)如圖1,①∵OM=ON=t,
∴AM=8﹣t,
∵MC∥y軸,
∴,即,
解得:MC=(8﹣t),
∵△CMN與△CMD關(guān)于直線MC對(duì)稱,
∴S△CMD=S△CMN,
∵0<t<2,
∴S=S△MCN=MC×t=﹣t2+2t.
②四邊形CDMN為正方形時(shí),MN=,
∴MC=ND==2t,
∴MC=(8﹣t)=2t,
解得:t=,
故答案為:
(3)設(shè)直線AB的解析式為y=kx+b,
∵A(-8,0),B(0,-4),
∴,
解得:,
∴直線AB的表達(dá)式為:y=﹣x﹣4,
如圖2,當(dāng)點(diǎn)D在AB上時(shí),設(shè)點(diǎn)M(﹣t,0),
∴N(0,-t),
當(dāng)y=-t時(shí),﹣x﹣4=-t,
解得:x=2t-8,
∴點(diǎn)D(2t﹣8,﹣t),
∴DN=8-2t,
∵OM=ON=t,
∴MN=t,∠OMN=∠ONM=45°,
∵MC⊥x軸,
∴∠CMN=45°,
∵△CMN與△CMD關(guān)于直線MC對(duì)稱,
∴∠DMC=∠CMN=45°,
∴∠DMN=90°,
∴△DMN是等腰直角三角形,
∴DN=MN,即8-2t=×t,
解得:t=2,
∵點(diǎn)C在直線AB上,MC⊥x軸,
∴當(dāng)x=-2時(shí),y=-×(-2)-4=-3,
∴點(diǎn)C(﹣2,﹣3),
∴AC==3,BC==,
∴AC=3BC,
如圖3,過點(diǎn)E、F分別作AB的垂線交AB于點(diǎn)G、H,
∵S△CBE:S△ACF=1:3,
∴AC·FH=3×BC·EG,即×3BC·FH=3×BC·EG,
∴EG=FH,
∵FH⊥AB,EG⊥AB,
∴∠FHC=∠EGC=90°,
在△FHC和△EGC中,,
∴△FHC≌△EGC,
∴FC=EC,
∴點(diǎn)C是EF的中點(diǎn),設(shè)點(diǎn)F(m,0),E(x,y),
∵點(diǎn)C(﹣2,﹣3),
∴,,
解得:x=-4-m,y=-6,
∴點(diǎn)E(﹣4﹣m,﹣6),
把點(diǎn)E的坐標(biāo)代入拋物線表達(dá)式得:-6=(-4-m)2+(-4-m)-4,
解得:m=0或﹣2,
當(dāng)m=0時(shí),-4-m=-4,點(diǎn)E坐標(biāo)為(-4,-6),
當(dāng)m=-2時(shí),-4-m=-2,點(diǎn)E坐標(biāo)為(-2,6),
綜上所述:點(diǎn)E的坐標(biāo)為:(﹣4,﹣6)或(﹣2,﹣6),
故答案為:(﹣4,﹣6)或(﹣2,﹣6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD的對(duì)角線AC上取點(diǎn)E,使得∠CDE=15°,連接BE.延長(zhǎng)BE到F,連接CF,使得CF=BC.
(1)求證:DE=BE;
(2)求證:EF=CE+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, ⊙O 的半徑是2,直線l與⊙O 相交于A、B 兩點(diǎn),M、N 是⊙O 上的兩個(gè)動(dòng)點(diǎn),且在直線l的異側(cè),若∠AMB=45°,則四邊形MANB 面積的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A(﹣2,0)、B(6,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)點(diǎn)P為y軸左側(cè)拋物線上一個(gè)動(dòng)點(diǎn),若S△PAB=32,求此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的布袋里裝有2個(gè)白球,1個(gè)黑球和若干個(gè)紅球,它們除顏色外其余都相同,從中任意摸出1個(gè)球,是紅球的概率為.
(1)布袋里紅球有______個(gè).
(2)先從布袋中摸出個(gè)球后不放回,再摸出1個(gè)球,請(qǐng)用列表或畫樹狀圖的方法求出兩次摸到的球都是白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店以10元/千克的價(jià)格收購(gòu)一批農(nóng)產(chǎn)品進(jìn)行銷售,經(jīng)過市場(chǎng)調(diào)查獲得部分?jǐn)?shù)據(jù)如下表:
銷售價(jià)格x(元/千克) | 10 | 13 | 16 | 19 | 22 | |
日銷售量y(千克) | 100 | 85 | 70 | 55 | 40 |
(1)請(qǐng)你根據(jù)表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定y與x之間的函數(shù)表達(dá)式;
(2)若該水果店要獲得375元的日銷售利潤(rùn),銷售單價(jià)x應(yīng)定為多少元?
(3)該水果店應(yīng)該如何確定這批水果的銷售價(jià)格,才能使日銷售利潤(rùn)W最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A,B,與軸交于點(diǎn)C。過點(diǎn)C作CD∥x軸,交拋物線的對(duì)稱軸于點(diǎn)D,連結(jié)BD。已知點(diǎn)A坐標(biāo)為(-1,0)。
(1)求該拋物線的解析式;
(2)求梯形COBD的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=45°.點(diǎn)D(與點(diǎn)B、C不重合)為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.
(1)如果AB=AC.如圖①,且點(diǎn)D在線段BC上運(yùn)動(dòng).試判斷線段CF與BD之間的位置關(guān)系,并證明你的結(jié)論.
(2)如果AB≠AC,如圖②,且點(diǎn)D在線段BC上運(yùn)動(dòng).(1)中結(jié)論是否成立,為什么?
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC=4,BC=3,CD=x,求線段CP的長(zhǎng).(用含x的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①已知線段CD所在直線的解析式為y=﹣x+3,分別交坐標(biāo)軸于點(diǎn)C、D,
(1)若以點(diǎn)B(1,0)為圓心的⊙B半徑為r,⊙B與線段CD只有一個(gè)交點(diǎn),則r滿足 .
(2)如圖②,如果點(diǎn)P從(﹣5,0)出發(fā),以1個(gè)單位長(zhǎng)度的速度沿x軸向右作勻速運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間到t秒時(shí),以點(diǎn)P為圓心、t個(gè)單位長(zhǎng)度為半徑的圓P與線段CD所在直線有兩個(gè)交點(diǎn),分別為點(diǎn)E、F,且∠EPF=2∠OCD,求此時(shí)t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com