【題目】已知拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)A(3,0),B(4,1)兩點(diǎn),且與y軸交于點(diǎn)C.
(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式及點(diǎn)C的坐標(biāo);
(2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點(diǎn)P,使△PAB是以AB為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖(2),連接AC,E為線段AC上任意一點(diǎn)(不與A、C重合)經(jīng)過(guò)A、E、O三點(diǎn)的圓交直線AB于點(diǎn)F,當(dāng)△OEF的面積取得最小值時(shí),求點(diǎn)E的坐標(biāo).
【答案】:(1)(0,3);
(2)點(diǎn)P的坐標(biāo)為:(﹣1,6),(4,﹣1),(0,3);
(3)E點(diǎn)坐標(biāo)為.
【解析】
(1)根據(jù)A(3,0),B(4,1)兩點(diǎn)利用待定系數(shù)法求二次函數(shù)解析式;
(2)從當(dāng)△PAB是以AB為直角邊的直角三角形,且∠PAB=90°與當(dāng)△PAB是以AB為直角邊的直角三角形,且∠PBA=90°,分別求出符合要求的答案;
(3)根據(jù)當(dāng)OE∥AB時(shí),△FEO面積最小,得出OM=ME,求出即可.
解:(1)∵拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)A(3,0),B(4,1)兩點(diǎn),
∴,
解得:,
∴;
∴點(diǎn)C的坐標(biāo)為:(0,3);
(2)當(dāng)△PAB是以AB為直角邊的直角三角形,且∠PAB=90°,
∵A(3,0),B(4,1),
∴AM=BM=1,
∴∠BAM=45°,
∴∠DAO=45°,
∴AO=DO,
∵A點(diǎn)坐標(biāo)為(3,0),
∴D點(diǎn)的坐標(biāo)為:(0,3),
∴直線AD解析式為:y=kx+b,將A,D分別代入得:
∴0=3k+b,b=3,
∴k=﹣1,
∴y=﹣x+3,
∴,
∴x2﹣3x=0,
解得:x=0或3,
∴y=3或0(不合題意舍去),
∴P點(diǎn)坐標(biāo)為(0,3),
當(dāng)△PAB是以AB為直角邊的直角三角形,且∠PBA=90°,
由(1)得,FB=4,∠FBA=45°,
∴∠DBF=45°,∴DF=4,
∴D點(diǎn)坐標(biāo)為:(0,5),B點(diǎn)坐標(biāo)為:(4,1),
∴直線AD解析式為:y=kx+b,將B,D分別代入得:
∴1=4k+b,b=5,
∴k=﹣1,
∴y=﹣x+5,
∴,
∴x2﹣3x﹣4=0,
解得:x1=﹣1,x2=4,
∴y1=6,y2=1,
∴P點(diǎn)坐標(biāo)為(﹣1,6),(4,﹣1)
∵P(4,﹣1)與點(diǎn)B重合,故舍去
∴點(diǎn)P的坐標(biāo)為:(﹣1,6),(0,3);
(3)作EM⊥BO,
∵當(dāng)OE∥AB時(shí),△FEO面積最小,
∴∠EOM=45°,
∴MO=EM,
∵E在直線CA上,
∴E點(diǎn)坐標(biāo)為(x,﹣x+3),
∴x=﹣x+3,
解得:,
∴E點(diǎn)坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的頂點(diǎn)在雙曲線的圖象上,直角邊在軸上,,,,連接,,則的值是( )
A. 4 B. -4 C. 2 D. -2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高4D=80mm, .把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.
(1)求證:;
(2)求這個(gè)正方形零件的邊長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在小正方形構(gòu)成的網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).
(1)的三個(gè)頂點(diǎn)都在格點(diǎn)上.
①在圖1中,畫(huà)出一個(gè)與成中心對(duì)稱的格點(diǎn)三角形;
②在圖2中,畫(huà)出一個(gè)與成軸對(duì)稱且與有公共邊的格點(diǎn)三角形;
③在圖3中,畫(huà)出繞著點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)后的三角形.
(2)如圖4是由5個(gè)邊長(zhǎng)為1的小正方形拼成的圖形,請(qǐng)選擇適當(dāng)?shù)母顸c(diǎn),用無(wú)刻度的直尺面經(jīng)過(guò)點(diǎn)的一條直線,使它平分該圖形的面積,保留連線的痕跡,不要求說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣3,2),B(﹣1,4),C(0,2).
(1)請(qǐng)畫(huà)出△ABC關(guān)于點(diǎn)O的對(duì)稱圖形△A1B1C1;
(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫(huà)出△A2B2C2并求出在旋轉(zhuǎn)過(guò)程中點(diǎn)B所經(jīng)過(guò)的圓弧長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)拋物線形的拱形橋洞,橋洞離水面的最大高度為4m,跨度為10m,如圖所示,把它的圖形放在直角坐標(biāo)系中.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)一輛寬為2米,高為3米的貨船能否從橋下通過(guò)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一座拋物線形拱橋,正常水位時(shí)橋下水面寬為20m,拱頂距水面4m.
(1)在如圖的直角坐標(biāo)系中,求出該拋物線的解析式;
(2)為保證過(guò)往船只順利航行,橋下水面寬度不得小于18m,求水面在正常水位基礎(chǔ)上,最多漲多少米,不會(huì)影響過(guò)往船只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)和(是常數(shù),且)在同一平面直角坐標(biāo)系的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形EFGH的四個(gè)頂點(diǎn)分別在正方形ABCD的四條邊上,若正方形EFGH與正方形ABCD的相似比為,則()的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com