精英家教網 > 初中數學 > 題目詳情

【題目】如圖,從地到地的公路需經過地,圖中,,因城市規(guī)劃的需要,將在兩地之間修建一條筆直的公路.

(Ⅰ)求改直的公路的長;

(Ⅱ)問公路改直后比原來縮短了多少?(參考數據:, ,.)(結果保留小數點后一位).

【答案】1)改直后的公路的長為千米;(Ⅱ)改直后的路程縮短了千米.

【解析】

(Ⅰ)過點CCHABH,根據AC=30千米,∠CAB=25°,求出CH、AH,根據∠CBA=45°,求出BH,最后根據AB=AH+BH列式計算即可,
(Ⅱ)在中,根據銳角三角函數求出BC,再根據ACBCAB的值,即可得出公路改直后該段路程比原來縮短的路程.

解:(1)過點于點

中, , ,

;

;

又在中,∵,∴,

.

答:改直后的公路的長為千米;

(Ⅱ)在中,,

,

(千米)

答:改直后的路程縮短了千米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】以下說法正確的有(  )

①正八邊形的每個內角都是135°

是同類二次根式

③長度等于半徑的弦所對的圓周角為30°

④反比例函數y=﹣,當x0時,yx的增大而增大.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某專賣店準備購進甲、乙兩種運動鞋,其進價和售價如下表所示。已知用3000元購進甲種運動鞋的數量與用2400元購進乙種運動鞋的數量相同.

運動鞋價格

進價元/)

m

m-30

售價(/)

300

200

(1)m的值;

(2)要使購進的甲,乙兩種運動鞋共200雙的總利潤不少于21700元且不超過22300元,問該專賣店有幾種進貨方案?

(3)(2)的條件下,專賣店決定對甲種運動鞋每雙優(yōu)惠a(60<a<80)元出售,乙種運動鞋價格不變,那么該專賣店要獲得最大利潤應如何進貨?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,分別以ACBC為底邊,向ABC外部作等腰ADCCEB,點MAB中點,連接MDME分別與ACBC交于點F和點G

求證四邊形MFCG是矩形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。

(1)求直線BC與拋物線的解析式;

(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MNy軸交直線BC于點N,求MN的最大值;

(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設平行四邊形CBPQ的面積為S1,ABN的面積為S2,且S1=6S2,求點P的坐標。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知射線DEx軸和y軸分別交于點D3,0和點E0,4).動點C從點M5,0)出發(fā),以1個單位長度/秒的速度沿x軸向左作勻速運動,與此同時,動點P從點D出發(fā),也以1個單位長度/秒的速度沿射線DE的方向作勻速運動,設運動時間為t秒,

(1)請用含t的代數式分別表示出點C與點P的坐標;

(2)以點C為中心,個單位長度為半徑的⊙Cx軸交于A、B兩點(點A在點B的左側),連接PA、PB

C與射線DE有公共點時,求t的取值范圍;

PAB為等腰三角形時,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,分別以邊BC,CD作等腰△BCF,CDE,使BC=BF,CD=DE,CBF=CDE,連接AF,AE.

(1)求證:△ABF≌△EDA;

(2)延長ABCF相交于G,若AFAE,求證BFBC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學為了了解學生對四大古典名著(《西游記》《三國演義》《水滸傳》《紅樓夢》)的閱讀情況,就四大古典名著你讀完了幾部的問題在全校學生中進行了抽樣調查.根據調查結果繪制成如所示的兩個不完整的統(tǒng)計圖,請結合圖中信息解決下列問題:

(1)本次調查一共抽取了_____名學生,扇形統(tǒng)計圖中“4所在扇形的圓心角為____度;

(2)請補全條形統(tǒng)計圖;若該中學有2000名學生,請估計至少閱讀1部四大古典名著的學生有多少名?

(3)沒有讀過四大名著的兩名學生準備從四大古典名著中各自隨機選擇一部來閱讀,請用列表法或樹狀圖求他們選中同一名著的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點EAB的中點,點P是對角線AC上一動點,設PC的長度為x,PEPB的長度和為y,圖y關于x的函數圖象,則圖象上最低點H的坐標為_____

查看答案和解析>>

同步練習冊答案