【題目】某專賣店準備購進甲、乙兩種運動鞋,其進價和售價如下表所示。已知用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.

運動鞋價格

進價元/)

m

m-30

售價(/)

300

200

(1)m的值;

(2)要使購進的甲,乙兩種運動鞋共200雙的總利潤不少于21700元且不超過22300元,問該專賣店有幾種進貨方案?

(3)(2)的條件下,專賣店決定對甲種運動鞋每雙優(yōu)惠a(60<a<80)元出售,乙種運動鞋價格不變,那么該專賣店要獲得最大利潤應如何進貨?

【答案】1m150;(2)該專賣店有9種進貨方案;(3)此時應購進甲種運動鞋82雙,購進乙種運動鞋118雙.

【解析】

1)根據(jù)3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同列出方程并解答;

2)設購進甲種運動鞋x雙,表示出乙種運動鞋(200x)雙,然后根據(jù)總利潤列出一元一次不等式,求出不等式組的解集后,再根據(jù)鞋的雙數(shù)是正整數(shù)解答;

3)設總利潤為W,根據(jù)總利潤等于兩種鞋的利潤之和列式整理,然后根據(jù)一次函數(shù)的增減性分情況討論求解即可.

1)依題意得: ,

解得:m150,

經檢驗:m150是原方程的根,

m150;

2)設購進甲種運動鞋x雙,則乙種運動鞋(200x)雙,根據(jù)題意得,

解得:81≤x≤90,

x為正整數(shù),

∴該專賣店有9種進貨方案;

3)設總利潤為W元,則

W=(300150ax+200120)(200x)=(70ax+16000,

①當60a70時,70a0,Wx的增大而增大,當x90時,W有最大值,

即此時應購進甲種運動鞋90雙,購進乙種運動鞋110雙;

②當a70時,70a0,W16000,(2中所有方案獲利都一樣;

③當70a80時,70a0Wx的增大而減小,當x82時,W有最大值,

即此時應購進甲種運動鞋82雙,購進乙種運動鞋118雙.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“十字相乘法”能把二次三項式分解因式,對于形如ax2+bxy+cy2x,y二次三項式來說,方法的關鍵是把x2項系數(shù)a分解成兩個因數(shù)a1a2的積,即aa1a2,把y2項系數(shù)c分解成兩個因數(shù),c1c2的積,即cc1c2,并使a1c2+a2c1正好等于xy項的系數(shù)b,那么可以直接寫成結果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y

例:分解因式:x22xy8y2

解:如右圖,其中11×1,﹣8=(﹣4)×2,而﹣21×(﹣4+1×2x22xy8y2=(x4y)(x+2y),而對于形如ax2+bxy+cy2+dx+ey+fx,y的二元二次式也可以用十字相乘法來分解,

如圖1,將a分解成mn乘積作為一列,c分解成pq乘積作為第二列,f分解成jk乘積作為第三列,如果mq+npb,pk+qje,mk+njd,即第1,2列、第2,3列和第13列都滿足十字相乘規(guī)則,則原式=(mx+py+j)(nx+qy+k);

例:分解因式:x2+2xy3y2+3x+y+2

解:如圖2,其中11×1,﹣3=(﹣1)×3,21×2;

21×3+1×(﹣1),1=(﹣1)×2+3×131×2+1×1;∴x2+2xy3y2+3x+y+2=(xy+1)(x+3y+2

請同學們通過閱讀上述材料,完成下列問題:

1)分解因式:6x27xy+2y2   x26xy+8y25x+14y+6   

2)若關于x,y的二元二次式x2+7xy18y25x+my24可以分解成兩個一次因式的積,求m的值.

3)已知x,y為整數(shù),且滿足x2+3xy+2y2+2x+4y=﹣1,求x,y

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸正半軸相交于、兩點,與軸相交于點,對稱軸為直線,且,則下列結論:

;②;③;④關于的方程有一個根為,其中正確的結論個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將三角尺的直角頂點放在直尺的一邊上,∠130°,

1)作出APCPC邊上的高;

2)若∠251°,求∠3

3)若直尺上點P處刻度為2,點C處為8,點M處為3,點N處為7,求SBMNSBPC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園手機”現(xiàn)象越來越受到社會的關注.“寒假”期間,某校小記者隨機調查了某地區(qū)若干名學生和家長對中學生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:

(1)求這次調查的家長人數(shù),并補全圖1;

(2)求圖2中表示家長“贊成”的圓心角的度數(shù);

(3)已知某地區(qū)共6500名家長,估計其中反對中學生帶手機的大約有多少名家長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為5,點A的坐標為(﹣40),點By軸上,若反比例函數(shù)k0)的圖象過點C,則該反比例函數(shù)的表達式為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】世界500H公司決定購買某演唱會門票獎勵部分優(yōu)秀員工,演唱會的購票方式有以下兩種,

方式一:若單位贊助廣告費10萬元,則該單位所購門票的價格為每張0.02萬元(其中總費用=廣告贊助費+門票費);

方式二:如圖所示,設購買門票x張,總費用為y萬元

1)求用購票方式一yx的函數(shù)關系式;

2)若H、A兩家公司分別釆用方式一、方式二購買本場演唱會門票共400張,且A公司購買超過100張,兩公司共花費27.2萬元,求H、A兩公司各購買門票多少張?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從地到地的公路需經過地,圖中,,,因城市規(guī)劃的需要,將在兩地之間修建一條筆直的公路.

(Ⅰ)求改直的公路的長;

(Ⅱ)問公路改直后比原來縮短了多少?(參考數(shù)據(jù): , ,.)(結果保留小數(shù)點后一位).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學綜合實踐活動中,小明計劃測量城門大樓的高度,在點B處測得樓頂A的仰角為22°,他正對著城樓前進21米到達C處,再登上3米高的樓臺D處,并測得此時樓頂A的仰角為45°

1)求城門大樓的高度;

2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請你求出A,B之間所掛彩旗的長度(結果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈

查看答案和解析>>

同步練習冊答案