【題目】如圖,直徑為10的⊙A經過點C(0,5)和點O(0,0),B是y軸右側⊙A優(yōu)弧上一點,則cos∠OBC的值為( 。
A. B. C. D.
【答案】B
【解析】試題分析:連接CD,由∠COD為直角,根據90°的圓周角所對的弦為直徑,可得出CD為圓A的直徑,再利用同弧所對的圓周角相等得到∠CBO=∠CDO,在直角三角形OCD中,由CD及OC的長,利用勾股定理求出OD的長,然后利用余弦函數定義求出cos∠CDO的值,即為cos∠CBO的值.
連接CD,如圖所示:
∵∠COD=90°,
∴CD為圓A的直徑,即CD過圓心A,
又∵∠CBO與∠CDO為所對的圓周角,
∴∠CBO=∠CDO,
又∵C(0,5),
∴OC=5,
在Rt△CDO中,CD=10,CO=5,
根據勾股定理得:
∴.
故選B
考點: 1.圓周角定理;2.勾股定理;3.銳角三角函數的定義.
科目:初中數學 來源: 題型:
【題目】已知直線,直線與、分別交于C、D兩點,點P是直線上的一動點.
(1)如圖,若動點P在線段CD之間運動(不與C、D兩點重合),問在點P的運動過程中是否始終具有這一相等關系?試說明理由;
(2)如圖,當動點P在線段CD之外且在的上方運動(不與C、D兩點重合),則上述結論是否仍成立?若不成立,試寫出新的結論,并說明理由;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察圖形,回答下列各題:
(1)圖A中,共有____對對頂角;
(2)圖B中,共有____對對頂角;
(3)圖C中,共有____對對頂角;
(4)探究(1)--(3)各題中直線條數與對頂角對數之間的關系,若有n條直線相交于一點,則可形成________對對頂角;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)已知二次函數.
(1)如果二次函數的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數圖象的對稱軸交于點P,求點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com