【題目】如圖,一次函數(shù)y=ax+ba≠0)的圖象與反比例函數(shù)k≠0)的圖象相交于A,B兩點(diǎn),與x軸,y軸分別交于C,D兩點(diǎn),tanDCO=,過(guò)點(diǎn)A作AEx軸于點(diǎn)E,若點(diǎn)C是OE的中點(diǎn),且點(diǎn)A的橫坐標(biāo)為﹣4.,

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接ED,求ADE的面積.

【答案】1y=x3y=;(2SADE= 6

【解析】試題分析:(1)根據(jù)題意求得OE=4,OC=2,Rt△COD中,tan∠DCO=

,OD=3,即可得到A(-4,3),D(0,-3),C(-2,0),運(yùn)用待定系數(shù)法即可求得反比例函數(shù)與一次函數(shù)的解析式;
(2)求得兩個(gè)三角形的面積,然后根據(jù)SADE=SACE+SDCE即可求得.

試題解析:

(1)AEx軸于點(diǎn)E,點(diǎn)COE的中點(diǎn),且點(diǎn)A的橫坐標(biāo)為﹣4,

OE=4,OC=2,

RtCOD中,tanDCO=,

OD=3,

A(﹣4,3),

D(0,﹣3),C(﹣2,0),

∵直線y=ax+b(a0)與x軸、y軸分別交于C、D兩點(diǎn),

,解得 ,

∴一次函數(shù)的解析式為y=x3,

把點(diǎn)A的坐標(biāo)(﹣4,3)代入,可得

3= ,解得k=12,

A(﹣2,3),

∴反比例函數(shù)解析式為y=

2SADE=SACE+SDCE=ECAE+ECOD=×2×3+=6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、b滿足.請(qǐng)回管問(wèn)題:

1)請(qǐng)直接寫(xiě)出a、b的值,a=______b=_______.

2)當(dāng)x的取值范圍是_________時(shí),有最小值,這個(gè)最小值是_____.

3)數(shù)軸a、b上兩個(gè)數(shù)所對(duì)應(yīng)的分別為AB,AB的中點(diǎn)為點(diǎn)C,點(diǎn)A、BC同時(shí)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),點(diǎn)B和點(diǎn)C分別以每秒1個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),當(dāng)A、B兩點(diǎn)重合時(shí),運(yùn)動(dòng)停止.

①經(jīng)過(guò)2秒后,求出點(diǎn)A與點(diǎn)B之間的距離AB.

②經(jīng)過(guò)t秒后,請(qǐng)問(wèn):BC+AB的值是否隨著時(shí)間t的變化而變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10

(1)守門員最后是否回到了球門線的位置?

(2)在練習(xí)過(guò)程中,守門員離開(kāi)球門最遠(yuǎn)距離是多少米?

(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,1),OA=AC,∠OAC=90°,點(diǎn)Dx軸上一動(dòng)點(diǎn),以AD為邊在AD的右側(cè)作正方形ADEF

1)當(dāng)點(diǎn)D在線段OC上時(shí)(不與點(diǎn)O、C重合),則線段CFOD之間的關(guān)系為   ;

2)當(dāng)點(diǎn)D在線段OC的延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由;

3)設(shè)D點(diǎn)坐標(biāo)為(t,0),當(dāng)D點(diǎn)從O點(diǎn)運(yùn)動(dòng)到C點(diǎn)時(shí),用含t的代數(shù)式表示E點(diǎn)坐標(biāo),求出E點(diǎn)所滿足的函數(shù)關(guān)系式,并寫(xiě)出E點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知關(guān)于x的函數(shù)y=k(x﹣1)和k≠0),它們?cè)谕蛔鴺?biāo)系內(nèi)的圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,DE△ABC的中位線,AF△ABC的中線.

求證DEAF

證法1∵DE△ABC的中位線,

∴DE

∵AF△ABC的中線,∠BAC90°

∴AF ,

∴DEAF

請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2

證法2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在⊙O上有一點(diǎn)C(C不與A、B重合),在直徑AB上有一個(gè)動(dòng)點(diǎn)P(P不與A、B重合).試判斷PA、PC、PB的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是

A. BC=AC B. CFBF C. BD=DF D. AC=BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AD平分∠BAC,過(guò)AC,D三點(diǎn)的圓與斜邊AB交于點(diǎn)E,連接DE

1)求證:AC=AE;

2)若AC=6CB=8,求ACD外接圓的直徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案