【題目】某地質(zhì)量監(jiān)管部門對(duì)轄區(qū)內(nèi)的甲、乙兩家企業(yè)生產(chǎn)的某同類產(chǎn)品進(jìn)行檢查,分別隨機(jī)抽取了50件產(chǎn)品并對(duì)某一項(xiàng)關(guān)鍵質(zhì)量指標(biāo)做檢測(cè),獲得了它們的質(zhì)量指標(biāo)值s,并對(duì)樣本數(shù)據(jù)(質(zhì)量指標(biāo)值s)進(jìn)行了整理、描述和分析.下面給出了部分信息.

a.該質(zhì)量指標(biāo)值對(duì)應(yīng)的產(chǎn)品等級(jí)如下:

質(zhì)量指標(biāo)值

等級(jí)

次品

二等品

一等品

二等品

次品

說(shuō)明:等級(jí)是一等品,二等品為質(zhì)量合格(其中等級(jí)是一等品為質(zhì)量?jī)?yōu)秀).

等級(jí)是次品為質(zhì)量不合格.

b.甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布統(tǒng)計(jì)表如下(不完整).

c.乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖如下.

甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布表

分組

頻數(shù)

頻率

2

0.04

m

32

n

0.12

0

0.00

合計(jì)

50

1.00

乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖

d.兩企業(yè)樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差、方差如下:

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

甲企業(yè)

31.92

32.5

34

15

11.87

乙企業(yè)

31.92

31.5

31

20

15.34

根據(jù)以上信息,回答下列問(wèn)題:

1m的值為_(kāi)_______,n的值為_(kāi)_______.

2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計(jì)該產(chǎn)品質(zhì)量合格的概率為_(kāi)_______;若乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬(wàn)件,估計(jì)質(zhì)量?jī)?yōu)秀的有________萬(wàn)件;

3)根據(jù)圖表數(shù)據(jù),你認(rèn)為_(kāi)_______企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量較好,理由為______________.(從某個(gè)角度說(shuō)明推斷的合理性)

【答案】1100.64;(23.5;(3)甲;兩個(gè)企業(yè)的平均數(shù)相等,S2<S2,甲企業(yè)的數(shù)據(jù)波動(dòng)小,比較穩(wěn)定

【解析】

1)根據(jù)頻率=頻數(shù)÷總數(shù)可求出n的值,進(jìn)而可求出的頻率,即可求出m的值;

2)根據(jù)甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布表可知次品的個(gè)數(shù)為2件,總數(shù)為50件,根據(jù)概率公式即可求出合格的概率;由乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖可知總數(shù)為50件,一等品為35件,即可求出優(yōu)秀率,進(jìn)而可求出5萬(wàn)件中優(yōu)秀品的個(gè)數(shù);

3)根據(jù)平均數(shù)相同,方差越小,數(shù)據(jù)的波動(dòng)越小;方差越大,數(shù)據(jù)的波動(dòng)越大即可解答.

1n=32÷50=0.64

的頻率為:1-0.12-0.04-0.64=0.2,

m=50×0.2=10

故答案為:10,0.64

2)∵甲企業(yè)生產(chǎn)的樣本中,次品有2件,總數(shù)為50件,

∴任取一件,估計(jì)該產(chǎn)品質(zhì)量合格的概率為=,

∵乙企業(yè)樣本中,優(yōu)秀品有35件,總數(shù)為50件,

∴優(yōu)秀率為×100%=70%,

5×70%=3.5(萬(wàn)件),

∴某批產(chǎn)品共5萬(wàn)件,估計(jì)質(zhì)量?jī)?yōu)秀的有3.5萬(wàn)件.

故答案為:3.5

3)∵兩個(gè)企業(yè)的平均數(shù)相等,S2<S2,

∴甲企業(yè)的數(shù)據(jù)波動(dòng)小,比較穩(wěn)定,

∴甲企業(yè)的產(chǎn)品質(zhì)量較好.

故答案為:甲,兩個(gè)企業(yè)的平均數(shù)相等,S2<S2,甲企業(yè)的數(shù)據(jù)波動(dòng)小,比較穩(wěn)定

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)一批單價(jià)為8元的商品,經(jīng)調(diào)研發(fā)現(xiàn),這種商品每天的銷售量y(件)是關(guān)于銷售單價(jià)x(元)的一次函數(shù),其關(guān)系如下表:

x()

10

11

12

13

14

y(件)

100

90

80

70

60

1)求yx之間的關(guān)系式;

2)設(shè)商店每天銷售利潤(rùn)為w(元),求出wx之間的關(guān)系式,并求出每天銷售單價(jià)定為多少時(shí)利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸,軸分別交于點(diǎn),,拋物線經(jīng)過(guò)點(diǎn),將點(diǎn)向右平移5個(gè)單位長(zhǎng)度,得到點(diǎn),若拋物線與線段恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,則的取值范圍__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A、B分別是x軸、y軸上的動(dòng)點(diǎn),點(diǎn)C、D是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形ABCDABCD各點(diǎn)依次排列)為正方形時(shí),我們稱這個(gè)正方形為此函數(shù)圖象的和諧正方形.例如:在圖1中,正方形ABCD是一次函數(shù)yx+1圖象的其中一個(gè)和諧正方形

1)如圖1,若某函數(shù)是一次函數(shù)yx+1,求它的圖象的所有和諧正方形的邊長(zhǎng);

2)如圖2,若某函數(shù)是反比例函數(shù)yk0),它的圖象的和諧正方形ABCD,點(diǎn)D2,m)(m2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)的解析式;

3)如圖3,若某函數(shù)是二次函數(shù)yax2+ca≠0),它的圖象的和諧正方形ABCD,CD中的一個(gè)點(diǎn)坐標(biāo)為(3,4),請(qǐng)求出該二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小石設(shè)計(jì)的“過(guò)圓上一點(diǎn)作圓的切線”的尺規(guī)作圖的過(guò)程.

已知:如圖1,上一點(diǎn)P.

求作:直線PQ,使得PQ相切.

作法:如圖2,

①連接PO并延長(zhǎng)交于點(diǎn)A

②在上任取一點(diǎn)B(點(diǎn)P,A除外),以點(diǎn)B為圓心,BP長(zhǎng)為半徑作,與射線PO的另一個(gè)交點(diǎn)為C.

③連接CB并延長(zhǎng)交于點(diǎn)Q.

④作直線PQ;

所以直線PQ就是所求作的直線.

根據(jù)小石設(shè)計(jì)的尺規(guī)作圖的過(guò)程.

1)使用直尺和圓規(guī),補(bǔ)全圖形:(保留作圖痕跡)

2)完成下面的證明.

證明:∵CQ是的直徑,

________(________________)(填推理的依據(jù))

.

又∵OP的半徑,

PQ的切線(________________)(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量一個(gè)鐵球的直徑,將該鐵球放入工件槽內(nèi),測(cè)得的有關(guān)數(shù)據(jù)如圖所示(單位:cm),則該鐵球的直徑為(

A.12 cmB.10 cmC.8 cmD.6 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在校運(yùn)會(huì)中取得更好的成績(jī),小丁積極訓(xùn)練.在某次試投中鉛球所經(jīng)過(guò)的路線是如圖所示的拋物線的一部分.已知鉛球出手處A距離地面的高度是米,當(dāng)鉛球運(yùn)行的水平距離為3米時(shí),達(dá)到最大高度B.小丁此次投擲的成績(jī)是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角三角形中,除直角外的5個(gè)元素中,已知2個(gè)元素(其中至少有1個(gè)是邊),就可以求出其余的3個(gè)未知元素.對(duì)于任意三角形,我們需要知道幾個(gè)元素就可以求出其余的未知元素呢?思考并解答下列問(wèn)題:

1)觀察圖①~圖④,根據(jù)圖中三角形的已知元素,可以求出其余未知元素的序號(hào)是____.

2)如圖⑤,在中,已知,,,能否求出BC的長(zhǎng)度?如果能,請(qǐng)求出BC的長(zhǎng)度;如果不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.利用一面墻(墻的長(zhǎng)度不限),用20m的籬笆圍成一個(gè)矩形場(chǎng)地ABCD.設(shè)矩形與墻垂直的一邊ABxm,矩形的面積為Sm2

1)用含x的式子表示S;

2)若面積S48m2,求AB的長(zhǎng);

3)能圍成S60m2的矩形嗎?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案