【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在半圓上,,過DDEBCE

1)求證:DE是⊙O的切線.

2)若DE2CE4,求⊙O的半徑.

【答案】1)證明見解析;(25

【解析】

1)如圖,連接ODAC,由AB是直徑可得∠ACB=90°,根據(jù)DEBC可得DE//AC,根據(jù)垂徑定理的推論可得ODAC,即可證明ODDE,由點(diǎn)D在圓上即可證明DE是⊙O的切線;(2)作OF⊥BCF,可得四邊形OFED是矩形,可得OFDE4ODEF,由垂徑定理可得BFCF,設(shè)⊙O的半徑為R,在Rt△AOF中,利用勾股定理求出R值即可.

1)如圖,連接OD、AC

AB是⊙O的直徑,

∴∠ACB90°,

ACBC,

DEBC,

DEAC,

ODAC,

DEOD,

D在⊙O上,

DE是⊙O的切線;

2)如圖,作OFBCF

BFCF,

DEBE,ODDEOFBC,

∴四邊形OFED是矩形,

OFDE4ODEF,

DE2CE4,

CE2,

設(shè)⊙O的半徑為R,則BFCFR2,

RtBOF中,BF2+OF2OA2,

R22+42R2

解得R5,

即⊙O的半徑為5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)﹣2≤x≤1時,二次函數(shù)y=﹣(xm2+m2+1有最大值3,則實(shí)數(shù)m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市一月份的營業(yè)額為200萬元,一月、二月、三月的營業(yè)額共1000萬元,如果平均每月增長率為,則由題意列方程應(yīng)為____________________________ 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙My軸相切于原點(diǎn)O,平行于x軸的直線交⊙MP、Q兩點(diǎn),點(diǎn)P在點(diǎn)Q的右邊,若P點(diǎn)的坐標(biāo)為(-1,2),則Q點(diǎn)的坐標(biāo)是

A. (-4,2) B. (-4.5,2) C. (-5,2) D. (-5.5,2 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(4,0),拋物線的對稱軸交x軸于點(diǎn)D,CEAB,并與拋物線的對稱軸交于點(diǎn)E,F(xiàn)有下列結(jié)論:①b2-4ac0;②b>0;③5a+b>0;④BD+CE=4.其中結(jié)論正確的個數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCADE均為等邊三角形,DBC上,DEAC相交于點(diǎn)F,BD=3,CF=2,ADE的周長=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;

3a+c=0;④當(dāng)y>0時,x的取值范圍是﹣1≤x<3;⑤當(dāng)x<0時,y隨x增大而增大,其中結(jié)論正確的是_____(只需填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】炎熱的夏天來臨之際.為了調(diào)查我校學(xué)生消防安全知識水平,學(xué)校組織了一次全校的消防安全知識培訓(xùn),培訓(xùn)完后進(jìn)行測試,在全校2400名學(xué)生中,分別抽取了男生,女生各15份成績,整理分析過程如下,請補(bǔ)充完整.

(收集數(shù)據(jù))

男生15名學(xué)生測試成績統(tǒng)計如下:

68,72,8985,82,85,74,9280,8576,85,69,78,80

女生15名學(xué)生測試成績統(tǒng)計如下:(滿分100)

82,88,8376,7378,67,81,8280,8086,82,80,82

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

組別

頻數(shù)

65.570.5

70.575.5

75.580.5

80.585.5

85.590.5

90.595.5

男生

2

2

4

5

1

1

女生

1

1

5

6

2

0

(分析數(shù)據(jù))

(1)兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)、方差如下表所示:

班級

平均數(shù)

眾數(shù)

中位數(shù)

方差

男生

80

x

80

45.9

女生

80

82

y

24.3

在表中:x_____;y_____.

(2)若規(guī)定得分在80分以上(不含80)為合格,請估計全校學(xué)生中消防安全知識合格的學(xué)生有______.

(3)通過數(shù)據(jù)分析得到的結(jié)論是女生掌握消防安全相關(guān)知識的整體水平比男生好,請從兩個方面說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0),C0,3.

1)求二次函數(shù)的解析式;

2)在圖中,畫出二次函數(shù)的圖象;

3)根據(jù)圖象,直接寫出當(dāng)y≤0時,x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案