【題目】如圖1,點(diǎn)A、B在直線MN上(A在B的左側(cè)),點(diǎn)P是直線MN上方一點(diǎn).若∠PAN=x°,∠PBN=y°,記< x,y >為P的雙角坐標(biāo).例如,若△PAB是等邊三角形,則點(diǎn)P的雙角坐標(biāo)為< 60,120 >.
(1)如圖2,若AB=22 cm,P<26.6,58>,求△PAB的面積;
(參考數(shù)據(jù):tan26.6°≈0.50,tan58°≈1.60.)
(2)在圖3中用直尺和圓規(guī)作出點(diǎn)P < x,y >,其中y=2x且y=x+30.(保留作圖痕跡)
【答案】(1)S△PAB=176 cm2;(2)見(jiàn)解析.
【解析】
(1)過(guò)P作PC⊥AB,垂足為C,則∠PCA=90°,利用三角函數(shù)求解即可;
(2)通過(guò)y=2x且y=x+30,得到x=30,y=60,可通過(guò)作等邊三角形的方法作出點(diǎn)P.
(1)解:過(guò)P作PC⊥AB,垂足為C,則∠PCA=90°.
在Rt△PBC中,∠PBC=58°,
∵ tan58°=,
∴ BC=,
在Rt△PAC中,∠PAC=26.6°,
∵ tan26.6°=,
∴ AC=,
∵ AB=AC-BC,
∴ -=22.
解得PC≈16 cm.
∴ S△PAB=×22×16=176 cm2.
(2)∵y=2x且y=x+30,
∴2x=x+30,
即x=30,y=60,
以B為圓心AB長(zhǎng)為半徑畫(huà)弧,再以A為圓心AB長(zhǎng)為半徑畫(huà)弧交之前的弧于點(diǎn)O,然后以O為圓心AB長(zhǎng)為半徑畫(huà)弧,即可得到點(diǎn)P,
如圖,點(diǎn)P即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】港口 A、B、C 依次在同一條直線上,甲、乙兩艘船同時(shí)分別從 A、B兩港出發(fā),勻速駛向 C 港,甲、乙兩船與 B 港的距離 y(海里)與行駛時(shí)間 x 時(shí))之間的函數(shù)關(guān)系如圖所示,則下列說(shuō)法錯(cuò)誤的是( )
A.甲船平均速度為 60 海里/時(shí)B.乙船平均速度為 30 海里/時(shí)
C.甲、乙兩船在途中相遇兩次D.A、C 兩港之間的距離為 120 海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,是邊上的一點(diǎn)(不與點(diǎn)重合),邊上點(diǎn)在點(diǎn)的右邊且,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,連接.
(1)如圖1,
①依題意補(bǔ)全圖1;
②求證:;
(2)如圖2,,用等式表示線段,,之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家經(jīng)營(yíng)打印耗材的門(mén)店經(jīng)銷各種打印耗材,其中某一品牌硒鼓的進(jìn)價(jià)為元/個(gè),售價(jià)為元/個(gè)().下面是門(mén)店在銷售一段時(shí)間后銷售情況的反饋:
①若每個(gè)硒鼓按定價(jià)30元的8折出售,可獲的利潤(rùn);
②如果硒鼓按30元/個(gè)的價(jià)格出售,每月可售出500個(gè),在此基礎(chǔ)上,售價(jià)每增加5元,月銷售量就減少50個(gè).
(1)求的值,并寫(xiě)出該品牌硒鼓每月的銷售量(個(gè))與售價(jià)(元/個(gè))之間的函數(shù)關(guān)系式,并注明自變量的取值范圍;
(2)求該耗材店銷售這種硒鼓每月獲得的利潤(rùn)(元)與售價(jià)(元/個(gè))之間的函數(shù)關(guān)系式,并求每月獲得的最大利潤(rùn);
(3)在新冠肺炎流行期間,這種硒鼓的進(jìn)價(jià)降低為元/個(gè),售價(jià)為元/個(gè)().耗材店在2月份仍然按照銷售量與售價(jià)關(guān)系不變的方式銷售,并決定將當(dāng)月銷售這種硒鼓獲得的利潤(rùn)全部捐贈(zèng)給火神山醫(yī)院,支援武漢抗擊新冠肺炎.若要使這個(gè)月銷售這種硒鼓獲得的利潤(rùn)(元)隨售價(jià)(元/個(gè))的增大而增大,請(qǐng)直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=45°,∠ABC=60°,AB=4,D是邊BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑畫(huà)⊙O分別交AB、AC于點(diǎn)E、F,則弦EF長(zhǎng)度的最小值為( )
A.B.C.2D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(是常數(shù),)與軸交于兩點(diǎn),頂點(diǎn)給出下列結(jié)論:①;②若在拋物線上,則;③關(guān)于的方程有實(shí)數(shù)解,則;④當(dāng)時(shí),為等腰直角三角形,其中正確的結(jié)論是( )
A.①②B.①③C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對(duì)稱軸x=1.
(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個(gè)單位長(zhǎng)度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2008年5月1日,目前世界上最長(zhǎng)的跨海大橋——杭州灣跨海大橋通車了.通車后,蘇南A地到寧波港的路程比原來(lái)縮短了120千米.已知運(yùn)輸車速度不變時(shí),行駛時(shí)間將從原來(lái)的3時(shí)20分縮短到2時(shí).
(1)求跨海大橋到寧波港的路程.
(2)若貨物運(yùn)輸費(fèi)用=A地經(jīng)杭州灣包括運(yùn)輸成本和時(shí)間成本,已知某車貨物從A地到寧波港的運(yùn)輸成本是每千米1.8元,時(shí)間成本是每時(shí)28元,那么該車貨物從A地經(jīng)杭州灣跨海大橋到寧波港的運(yùn)輸費(fèi)用是多少元?
(3)A地準(zhǔn)備開(kāi)辟寧波方向的外運(yùn)路線,即貨物從A地經(jīng)杭州灣跨海大橋到寧波港,再?gòu)膶幉ǜ圻\(yùn)到B地.若有一批貨物(不超過(guò)10車)從A地按外運(yùn)路線運(yùn)到B地的運(yùn)費(fèi)需8320元,其中從A地經(jīng)杭州灣跨海大橋到寧波港的每車運(yùn)輸費(fèi)用與(2)中相同,從寧波港到B地的海上運(yùn)費(fèi)對(duì)一批不超過(guò)10車的貨物計(jì)費(fèi)方式是:一車800元,當(dāng)貨物每增加1車時(shí),每車的海上運(yùn)費(fèi)就減少20元,問(wèn)這批貨物有幾車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為⊙的內(nèi)接三角形,為⊙的直徑,在線段上取點(diǎn)(不與端點(diǎn)重合),作,分別交、圓周于、,連接,已知.
(1)求證:為⊙的切線;
(2)已知,填空:
①當(dāng)__________時(shí),四邊形是菱形;
②若,當(dāng)__________時(shí),為等腰直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com