【題目】我市某高科技公司生產(chǎn)一種矩形新型材料板,其長寬之比為 32,每張材料板的成本 c與它的面積成正比例。每張材料板的銷售價格 y與其寬 x 之間滿足我們學習過的某種函數(shù)關系(即一次函數(shù)、反比例函數(shù)和二次函數(shù)關系中的一種),下表記錄了該工廠生產(chǎn)、銷售該材料板一些數(shù)據(jù):

1)求一張材料板的銷售格 y 其寬 x 之間的函數(shù)關系式 (不必寫出自變的取值范圍)

2)若一張材料板的利潤 w 為銷售價格 y與成本 c 的差

①請直接寫出一張材料板的利潤 w 其寬 x 之間的函數(shù)關系 (不必寫出自變的取值范圍)

②當材料板的寬為多少時,一張材料板的利潤最大,最大利潤是多少?

【答案】1 ;(2 ;②當寬為60cm時,利潤最大 ,最大利潤為900元.

【解析】

1)根據(jù)圖表可知所有點在一條直線上,故是一次函數(shù),然后用待定系數(shù)法求出解析式并驗證;

2)①因為長寬之比為32,當寬為x時,則長為1.5x,根據(jù)矩形的面積公式可得xy的關系進而得到cx的關系,所以一張材料板的利潤w與其寬x之間的函數(shù)關系可求出;②利用①中的函數(shù)性質(zhì)即可求出當材料板的寬為多少時,一張材料板的利潤最大,以及最大利潤是多少.

解:(1)根據(jù)表中的數(shù)據(jù)判斷,銷售價格y于寬x之間的函數(shù)關系是一次函數(shù),設其解析式為ykxb,

24kb780,30kb900,

解得:k20,b300,

x42,y1140x54,y1380代入檢驗,滿足條件

所以其解析式為y20x300;

2)①∵矩形材料板,其長寬之比為32,

∴當寬為x時,則長為1.5x,

c1.5kx2k,

cx2

wx220x300;

②由①可知:wx220x300x602900

∴當材料板的寬為60cm時,一張材料板的利潤最大,最大利潤是900元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AC是對角線,AB=8cm,BC=6cm.點P從點A出發(fā),沿AC方向勻速運動,速度為2cm/s,同時,點Q從點B出發(fā),沿BA方向勻速運動,速度為2cm/s.過點P作PMAD于點M,連接PQ,設運動時間為t(s)(0<t<4),解答下列問題:

(1)當t為何值時,點Q在線段AC的中垂線上;

(2)寫出四邊形PQAM的面積為S(cm2)與時間t的函數(shù)關系式;

(3)是否存在某一時刻t,使S四邊形PQAM:S矩形ABCD=9:50?若存在,求出t的值;若不存在,請說明理由;

(4)當t為何值時,APQ與ADC相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形ABCD與雙曲線交于D、E兩點,將OCD沿OD翻折,點C的對稱C'恰好落在邊AB上,已知OA=3,OC=5,則AE長為(

A. 4B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似但不全等,我們就把這條對角線叫做這個四邊形的相似對角線”.

1)如圖1,在四邊形中,,,對角線平分.求證:是四邊形相似對角線;

2)如圖2,已知格點,請你在正方形網(wǎng)格中畫出所有的格點四邊形,使四邊形是以相似對角線的四邊形;(注:頂點在小正方形頂點處的多邊形稱為格點多邊形)

3)如圖3,四邊形中,點在射線上,點軸正半軸上,對角線平分,連接.是四邊形相似對角線,,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yx2+bx+c+1的圖象與x軸交于點Ax10)、Bx2,0),且x1x2,與y軸的負半軸交于點C

1)當b1時,求c的取值范圍;

2)如果以AB為直徑的半圓恰好過點C,求c的值;

3)在(2)的條件下,如果二次函數(shù)的對稱軸lx軸、直線BC、直線AC的延長線分別交于點DE、F,且滿足DE2EF,求二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛慢車和一輛快車沿相同路線從A地到B,所行駛的路程與時間的函數(shù)圖象如圖所示下列說法正確的有()

快車追上慢車需6小時

慢車比快車早出發(fā)2小時

快車速度為46km/h

慢車速度為46km/h

AB兩地相距828km

快車14小時到達B

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖所示,在矩形ABCD中,點EBC邊上,△AEF90°

1)如圖①,已知點FCD邊上,ADAE5,AB4,求DF的長;

2)如圖②,已知AEEF,GAF的中點,試探究線段AB,BE,BG的數(shù)量關系;

3)如圖③,點E在矩形ABCDBC邊的延長線上,AEBG相交于O點,其他條件與(2)保持不變,AD5,AB4CE1,求△AOG的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接中國森博會,某商家計劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(元/件)是采購數(shù)量(件)的一次函數(shù),下表提供了部分采購數(shù)據(jù).

采購數(shù)量(件)

1

2

A產(chǎn)品單價(元/件)

1480

1460

B產(chǎn)品單價(元/件)

1290

1280

1)設A產(chǎn)品的采購數(shù)量為x(件),采購單價為y1(元/件),求y1x的關系式;

2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的,且A產(chǎn)品采購單價不低于1200元,求該商家共有幾種進貨方案;

3)該商家分別以1760/件和1700/件的銷售單價售出A,B兩種產(chǎn)品,且全部售完,在(2)的條件下,求采購A種產(chǎn)品多少件時總利潤最大,并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.

查看答案和解析>>

同步練習冊答案