【題目】為了解學生的體能情況,隨機選取了1000名學生進行調(diào)查,并記錄了他們對長跑、短跑、跳繩、跳遠四個項目的喜歡情況,整理成以下統(tǒng)計表,其中“√”表示喜歡,“×”表示不喜歡.

項目
學生

長跑

短跑

跳繩

跳遠

200

×

300

×

×

150

×

200

×

×

150

×

×

×


(1)估計學生同時喜歡短跑和跳繩的概率;
(2)估計學生在長跑、短跑、跳繩、跳遠中同時喜歡三個項目的概率;
(3)如果學生喜歡長跑、則該同學同時喜歡短跑、跳繩、跳遠中哪項的可能性大?

【答案】
(1)

解:同時喜歡短跑和跳繩的概率= =


(2)

解:同時喜歡三個項目的概率= =


(3)

解:同時喜歡短跑的概率= = ,同時喜歡跳繩的概率= = ,同時喜歡跳遠的概率= = ,

,

∴同時喜歡跳繩的可能性大


【解析】(1)根據(jù)求概率的公式即可得到結(jié)論;
    (2)根據(jù)求概率的公式即可得到結(jié)論;
    (3)根據(jù)求概率的公式求得各項概率進行比較即可得到結(jié)論. 本題考查了利用頻率估計概率,求概率,正確的理解題意是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小青在本學期的數(shù)學成績?nèi)缦卤硭荆ǔ煽兙≌麛?shù)):

(1)計算小青本學期的平時平均成績;

(2)如果學期的總評成績是根據(jù)圖所示的權(quán)重計算,那么本學期小青的期末考試成績x至少為多少分才能保證達到總評成績90分的最低目標?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某天,一蔬菜經(jīng)營戶用114元從蔬菜批發(fā)市場購進黃瓜和土豆共40kg到菜市場去賣,黃瓜和土豆這天的批發(fā)價和零售價(單位:元/kg)如下表所示:

(1)他當天購進黃瓜和土豆各多少千克?

(2)如果黃瓜和土豆全部賣完,他能賺多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校要從甲、乙、丙、丁四名學生中選一名參加“漢字聽寫”大賽,選拔中每名學生的平均成績 及其方差s2如表所示,如果要選拔一名成績高且發(fā)揮穩(wěn)定的學生參賽,則應選擇的學生是( )

8.9

9.5

9.5

8.9

s2

0.92

0.92

1.01

1.03


A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的菱形ABCD中,DAB=60°,連接對角線AC,以AC為邊作第二個菱形ACC1D1,使∠D1AC=60°,連接AC1,再以AC1為邊作第三個菱形AC1C2D2,使∠D2AC1=60°;…,按此規(guī)律所作的第六個菱形的邊長為( )

A. 9 B. C. 27 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于點OCAB的平分線分別交BD、BCE、F,作BHAF于點H,分別交ACCD于點G、P,連結(jié)GE、GF

1)求證:OAE≌△OBG

2)試問:四邊形BFGE是否為菱形?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種水彩筆,在購買時,若同時額外購買筆芯,每個優(yōu)惠價為3元,使用期間,若備用筆芯不足時需另外購買,每個5元.現(xiàn)要對在購買水彩筆時應同時購買幾個筆芯作出選擇,為此收集了這種水彩筆在使用期內(nèi)需要更換筆芯個數(shù)的30組數(shù)據(jù),整理繪制出下面的條形統(tǒng)計圖:
設x表示水彩筆在使用期內(nèi)需要更換的筆芯個數(shù),y表示每支水彩筆在購買筆芯上所需要的費用(單位:元),n表示購買水彩筆的同時購買的筆芯個數(shù).
(1)若n=9,求y與x的函數(shù)關系式;
(2)若要使這30支水彩筆“更換筆芯的個數(shù)不大于同時購買筆芯的個數(shù)”的頻率不小于0.5,確定n的最小值;
(3)假設這30支筆在購買時,每支筆同時購買9個筆芯,或每支筆同時購買10個筆芯,分別計算這30支筆在購買筆芯所需費用的平均數(shù),以費用最省作為選擇依據(jù),判斷購買一支水彩筆的同時應購買9個還是10個筆芯.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的方程3x2+mx﹣8=0有一個根是 ,求另一個根及m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,將腰CD以點D為中心逆時針旋轉(zhuǎn)90°至ED,連結(jié)AE,CE,則△ADE的面積是(

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案