【題目】小青在本學期的數(shù)學成績如下表所示(成績均取整數(shù)):

(1)計算小青本學期的平時平均成績;

(2)如果學期的總評成績是根據(jù)圖所示的權重計算,那么本學期小青的期末考試成績x至少為多少分才能保證達到總評成績90分的最低目標?

【答案】(1)85(2)94分

【解析】解:(1)小青該學期的平時平均成績?yōu)椋海?8+70+96+86)÷4=85. -------3分

(2)按照如圖所示的權重,小青該學期的總評成績?yōu)椋?5×10%+85×30%+60% x

--------5分

依題意得:85×10%+85×30%+60% x=90. --------6分

解得:x=93.33--------7分

答:小青期末考試成績至少需要94分--------8分

(列不等式相應給分)

(1)平時成績利用平均數(shù)公式. 計算;

(2)根據(jù)加權平均數(shù)公式列出方程,求得x的值即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調查(每位同學只選最關注的一個),根據(jù)調查結果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).
(3)如果要在這5個主題中任選兩個進行調查,根據(jù)(2)中調查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連接FB,F(xiàn)C.
(1)求證:∠FBC=∠FCB;
(2)已知FAFD=12,若AB是△ABC外接圓的直徑,F(xiàn)A=2,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,一個直角三角板XYZ放置在△ABC上,恰好三角板XYZ的兩條直角邊XY,XZ分別經(jīng)過點B,C,△ABC中,若∠A=30°,則∠ABC+∠ACB=__ __,∠XBC+∠XCB=__ __;

(2)若改變直角三角板XYZ的位置,但三角板XYZ的兩條直角邊XY,XZ仍然分別經(jīng)過點B,C,那么∠ABX+∠ACX的大小是否變化?若變化,請說明理由;若不變化,請求出∠ABX+∠ACX的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中放置一菱形OABC,已知ABC=60°,OA=1.現(xiàn)將菱形OABC沿x軸的正方向無滑動翻轉,每次翻轉60°,連續(xù)翻轉2018次,點B的落點依次為B1,B2,B3,B4,…,則B2018的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把Rt△ACO以O點為中心,逆時針旋轉90°,得Rt△BDO,點B坐標為(0,﹣3),點C坐標為(0, ),拋物線y=﹣ x2+bx+c經(jīng)過點A和點C.

(1)求b,c的值;
(2)在x軸以上的拋物線對稱軸上是否存在點Q,使得△ACQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由
(3)點P從點O出發(fā)沿x軸向負半軸運動,每秒1個單位,過點P作y軸的平行線交拋物線于點M,當t為幾秒時,以M、P、O、C為頂點得四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知xy、z為有理數(shù),且|x+y+z+1|=x+yz﹣2,則=____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上有A,B,C三地,C地位于A,B兩地之間,甲,乙兩車分別從A,B兩地出發(fā),沿這條公路勻速行駛至C地停止.從甲車出發(fā)至甲車到達C地的過程,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關系如圖表示,當甲車出發(fā)h時,兩車相距350km.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生的體能情況,隨機選取了1000名學生進行調查,并記錄了他們對長跑、短跑、跳繩、跳遠四個項目的喜歡情況,整理成以下統(tǒng)計表,其中“√”表示喜歡,“×”表示不喜歡.

項目
學生

長跑

短跑

跳繩

跳遠

200

×

300

×

×

150

×

200

×

×

150

×

×

×


(1)估計學生同時喜歡短跑和跳繩的概率;
(2)估計學生在長跑、短跑、跳繩、跳遠中同時喜歡三個項目的概率;
(3)如果學生喜歡長跑、則該同學同時喜歡短跑、跳繩、跳遠中哪項的可能性大?

查看答案和解析>>

同步練習冊答案