精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,AB=AC=24厘米,BC=16厘米,點DAB的中點,點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當點Q的運動速度為_______厘米/秒時,能夠在某一時刻使△BPD△CQP全等.

【答案】46

【解析】

求出BD,根據全等得出要使△BPD與△CQP全等,必須BD=CPBP=CP,得出方程12=16-4x4x=16-4x,求出方程的解即可.

設經過x秒后,使△BPD與△CQP全等,

AB=AC=24厘米,點DAB的中點,

BD=12厘米,

∵∠ABC=ACB,

∴要使△BPD與△CQP全等,必須BD=CPBP=CP,

12=16-4x4x=16-4x,

x=1x=2,

x=1時,BP=CQ=4,4÷1=4;

x=2時,BD=CQ=12,12÷2=6;

即點Q的運動速度是46,

故答案為:46

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,D在邊AC上,且BD=DA=BC

1)如圖1,填空:A=_______

2)如圖2,若M為線段AC上的點,過M作直線MHBDH,分別交直線AB、BC于點N、E

求證:BNE是等腰三角形;

試寫出線段ANCE、CD之間的數量關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

①以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1;
②將△ABC繞A點逆時針旋轉90°得到△AB2C2 , 畫出△AB2C2 , 并求出AC掃過的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠D=∠B90°,AE平分∠DABCF平分∠DCB

1)若∠DAB72°,∠2   °,∠3   °;

2)求證:AECF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數的圖象與反比例函數的圖象相交于A、B兩點。

(1)利用圖中的條件,求反比例函數和一次函數的解析式;
(2)根據圖象直接寫出一次函數的值大于反比例函數的x的取值范圍。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】綜合與實踐

已知,在RtABC中,ACBC,∠C90°DAB邊的中點,∠EDF90°,∠EDF繞點D旋轉,它的兩邊分別交ACCB(或它們的延長線)于點E,F

1)(問題發(fā)現)

如圖1,當∠EDF繞點D旋轉到DEAC于點E時(如圖1),

①證明:△ADE≌△BDF;

②猜想:SDEF+SCEF   SABC

2)(類比探究)

如圖2,當∠EDF繞點D旋轉到DEAC不垂直時,且點E在線段AC上,試判斷SDEF+SCEFSABC的關系,并給予證明.

3)(拓展延伸)

如圖3,當點E在線段AC的延長線上時,此時問題(2)中的結論是否成立?若成立,請給予證明;若不成立,SDEF,SCEF,SABC又有怎樣的關系?(寫出你的猜想,不需證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】“一帶一路”讓中國和世界更緊密,“中歐鐵路”為了安全起見在某段鐵路兩旁安置了兩座可旋轉探照燈.如圖1所示,燈A射線從AM開始順時針旋轉至AN便立即回轉,燈B射線從BP開始順時針旋轉至BQ便立即回轉,兩燈不停交叉照射巡視.若燈A轉動的速度是每秒2度,燈B轉動的速度是每秒1度.假定主道路是平行的,即PQMN,且∠BAM:∠BAN=2:1.

(1)填空:∠BAN=_____°;

(2)若燈B射線先轉動30秒,燈A射線才開始轉動,在燈B射線到達BQ之前,A燈轉動幾秒,兩燈的光束互相平行?

(3)如圖2,若兩燈同時轉動,在燈A射線到達AN之前.若射出的光束交于點C,過C作ACD交PQ于點D,且ACD=120°,則在轉動過程中,請?zhí)骄?/span>BAC與BCD的數量關系是否發(fā)生變化?若不變,請求出其數量關系;若改變,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABCD,CD的右側,BE平分ABC,DE平分ADC,BE、DE所在直線交于點E,ADC=70°.

(1)EDC的度數;

(2)ABC=n°,BED的度數(用含n的代數式表示);

(3)將線段BC沿DC方向平移,使得點B在點A的右側,其他條件不變,畫出圖形并判斷BED的度數是否改變,若改變,求出它的度數(用含n的式子表示);若不改變,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們定義:

(概念理解)

在一個三角形中,如果一個角的度數是另一個角度數的 4 倍,那么這樣的三角形我們稱之為“完美三角形”.如:三個內角分別為 130°,40°,10°的三角形是“完美三角形”.

(簡單應用)

如圖 1,∠MON=72°,在射線OM上找一點A,過點AABOM ON于點B,以A為端點作射線AD,交線段OB 于點C(點 C不與 O,B重合)

1)∠ABO ,△AOB__________(填“是”或“不是”)“完美三角形”;

2)若∠ACB90°,求證:△AOC是“完美三角形”.

(應用拓展)

如圖 2,點D在△ABC 的邊AB上,連接DC,作∠ADC的平分線交AC于點E,在DC上取點F,使,.若△BCD是“完美三角形”, 求∠B的度數.

查看答案和解析>>

同步練習冊答案