【題目】我們定義:
(概念理解)
在一個三角形中,如果一個角的度數(shù)是另一個角度數(shù)的 4 倍,那么這樣的三角形我們稱之為“完美三角形”.如:三個內(nèi)角分別為 130°,40°,10°的三角形是“完美三角形”.
(簡單應(yīng)用)
如圖 1,∠MON=72°,在射線OM上找一點A,過點A作AB⊥OM 交ON于點B,以A為端點作射線AD,交線段OB 于點C(點 C不與 O,B重合)
(1)∠ABO= ,△AOB__________(填“是”或“不是”)“完美三角形”;
(2)若∠ACB=90°,求證:△AOC是“完美三角形”.
(應(yīng)用拓展)
如圖 2,點D在△ABC 的邊AB上,連接DC,作∠ADC的平分線交AC于點E,在DC上取點F,使,.若△BCD是“完美三角形”, 求∠B的度數(shù).
【答案】【簡單應(yīng)用】:(1)18°,是;(2)詳見解析;【應(yīng)用拓展】:
【解析】
(1)根據(jù)直角三角形兩銳角互余即可求出∠ABO=18°,由∠MON=4∠ABO,故為完美三角形;(2)根據(jù)垂直的性質(zhì)與三角形的內(nèi)角和求出∠OAC,即可得出△AOC是“完美三角形”(3)先由證得,,再根據(jù)△BCD是“完美三角形”,得出,再根據(jù)三角形的內(nèi)角和求出∠B的度數(shù).
(1)∠ABO=90°-∠MON =18°,
∵∠MON=4∠ABO
∴△AOB是“完美三角形”;
(2)
證明:
是“完美三角形”
(3)
是“完美三角形”
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=24厘米,BC=16厘米,點D為AB的中點,點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當點Q的運動速度為_______厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標系中。
(1)請寫出△ABC各點的坐標;
(2)求出△ABC的面積S△ABC;
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A1B1C1,在圖中畫出△A1B1C1,并寫出△A1B1C1的坐標。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AC∥DF,直線AF分別與直線BD、CE相交于點G,H,∠1=∠2,求證:∠C=∠D.
解:∵∠1=∠2(已知)
∠1=∠DGH( 。,
∴∠2= ( 等量代換 )
∴ ∥ (同位角相等,兩直線平行)
∴∠C= (兩直線平行,同位角相等)
又∵AC∥DF( 。
∴∠D=∠ABG ( 。
∴∠C=∠D ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.
(1)求證:AB是⊙O的切線;
(2)若AC=8,tan∠BAC= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校利用五一組織老師去婁山關(guān)進行紅色文化拓展活動,現(xiàn)有甲、乙兩家旅行 社可供選擇,票價都是元/人,甲旅行社的優(yōu)惠方案是:按總價打八五折;乙旅行社 的優(yōu)惠方案是:前人按原價付費,超過的部分折優(yōu)惠.該校有教師人.
(1)設(shè)總價為元.寫出與之間的函數(shù)關(guān)系式;
(2)在不曉得該校人數(shù)的情況下,請給學(xué)校提出比較省錢的購票建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個數(shù)是 ( )
①若三條線段的比為1:1:,則它們組成一個等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個直角梯形。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)準備購買筆和本子送給農(nóng)村希望小學(xué)的同學(xué),在市場上了解到某種本子的單價比某種筆的單價少4元,且用30元買這種本子的數(shù)量與用50元買這種筆的數(shù)量相同.
(1)求這種筆和本子的單價;
(2)該同學(xué)打算用自己的100元壓歲錢購買這種筆和本子,計劃100元剛好用完,并且筆和本子都買,請列出所有購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com