【題目】已知:如圖,ACDF,直線AF分別與直線BDCE相交于點(diǎn)G,H,∠1=∠2,求證:∠C=∠D

解:∵∠1=∠2(已知)

1=∠DGH   。

∴∠2   ( 等量代換 )

      (同位角相等,兩直線平行)

∴∠C   (兩直線平行,同位角相等)

又∵ACDF   。

∴∠D=∠ABG    )

∴∠C=∠D   。

【答案】見解析.

【解析】

試題本題考查證明依據(jù)的填寫,平行線的性質(zhì)判定的綜合運(yùn)用,等式性質(zhì).

試題解析:∵∠1=∠2(已知)

∠1=∠DGH對頂角相等),

∴∠2=__∠DGH________( 等量代換 )

∴__BD//CE___________( 同位角相等,兩直線平行 )

∴∠C=_∠ABG(∠ABD__)_( 兩直線平行,同位角相等 )

∵AC∥DF(已知)

∴∠D=∠ABG (兩直線平行,內(nèi)錯(cuò)角相等)

∴∠C=∠D (等量代換)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠D=∠B90°,AE平分∠DABCF平分∠DCB

1)若∠DAB72°,∠2   °,∠3   °;

2)求證:AECF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,CD的右側(cè),BE平分ABC,DE平分ADC,BE、DE所在直線交于點(diǎn)E,ADC=70°.

(1)EDC的度數(shù);

(2)ABC=n°,BED的度數(shù)(用含n的代數(shù)式表示);

(3)將線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫出圖形并判斷BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)P在CA的延長線上,∠CAD=45°.
(Ⅰ)若AB=4,求 的長;
(Ⅱ)若 = ,AD=AP,求證:PD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC、BD相交于點(diǎn)O,△ABO≌△ADO,下列結(jié)論:①ACBD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正確結(jié)論的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A(0,6),N(0,2),∠ABN=30°,求點(diǎn)B的坐標(biāo);
(2)若D為線段NB的中點(diǎn),求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:

(概念理解)

在一個(gè)三角形中,如果一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的 4 倍,那么這樣的三角形我們稱之為“完美三角形”.如:三個(gè)內(nèi)角分別為 130°,40°,10°的三角形是“完美三角形”.

(簡單應(yīng)用)

如圖 1,∠MON=72°,在射線OM上找一點(diǎn)A,過點(diǎn)AABOM ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交線段OB 于點(diǎn)C(點(diǎn) C不與 O,B重合)

1)∠ABO ,△AOB__________(填“是”或“不是”)“完美三角形”;

2)若∠ACB90°,求證:△AOC是“完美三角形”.

(應(yīng)用拓展)

如圖 2,點(diǎn)D在△ABC 的邊AB上,連接DC,作∠ADC的平分線交AC于點(diǎn)E,在DC上取點(diǎn)F,使,.若△BCD是“完美三角形”, 求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,對角線ACBD相交于O,∠AOB60度,AC10,(1)求矩形較短邊的長.

2)矩形較長邊的長

3)矩形的面積

如果把本題改為:矩形ABCD中,對角線ACBD相交于O,∠AOB60度,AB4,你能求出這個(gè)矩形的面積嗎?試寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別是A(1,3)、B(2,2)、C(2,1),D(3,3).
(1)以原點(diǎn)O為位似中心,相似比為2,將圖形放大,畫出符合要求的位似四邊形;
(2)在(1)的前提下,寫出點(diǎn)A的對應(yīng)點(diǎn)坐標(biāo)A′,并說明點(diǎn)A與點(diǎn)A′坐標(biāo)的關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案