【題目】閱讀理解,補全證明過程及推理依據(jù).

已知:如圖,點E在直線DF上,點B在直線AC上,∠1=2,3=4.

求證∠AF

證明:∵∠1=2(已知)

2=DGF   

∴∠1=DGF(等量代換)

         

∴∠3+   =180°(   

又∵∠3=4(已知)

∴∠4+C=180°(等量代換)

         

∴∠AF   

【答案】對頂角相等;BDCE;同位角相等,兩直線平行;C;兩直線平行,同旁內(nèi)角互補;ACDF;同旁內(nèi)角互補,兩直線平行;兩直線平行,內(nèi)錯角相等.

【解析】

先證明BDCE,得出同旁內(nèi)角互補∠3+C=180°,再由已知得出∠4+C=180°,證出ACDF,即可得出結論.

∵∠1=∠2(已知)

2=∠DGF(對頂角相等)

∴∠1=∠DGF 等量代換

BDCE (同位角相等,兩直線平行)

∴∠3+C180°(兩直線平行,同旁內(nèi)角互補)

又∵∠3=∠4(已知)

∴∠4+C180°

ACDF(同旁內(nèi)角互補,兩直線平行)

∴∠A=∠F(兩直線平行,內(nèi)錯角相等).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AE為邊BC上的高,點D為邊BC上的一點,連接AD

1)當AD為邊BC上的中線時.若AE=4,ABC的面積為24,求CD的長;

2)當ADBAC的角平分線時.

C =65°,B =35°,求DAE的度數(shù);

C-B =20°,則DAE =   °

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在正方形ABCD中,AE∥BD,BE=BD,BE交AD于F.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次藝術作品制作比賽中,某小組八件作品的成績單位:分分別是:7、98、9、810、97,下列說法不正確的是  

A. 中位數(shù)是B. 平均數(shù)是C. 眾數(shù)是9D. 極差是3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“利!蓖ㄓ嵠鞑纳虉觯媱澯60000元從廠家購進若干部新型手機,出廠價分別為甲種型號手機每部1800元,乙種型號手機每部600元,丙種型號手機每部1200元.若商場同時購進其中兩種不同型號的手機共40部,并將60000元恰好用完,請你幫助商場計算一下如何購買.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電視臺走基層欄目的一位記者乘汽車赴360km外的農(nóng)村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關系如圖所示,則下列結論正確的是

A)汽車在高速公路上的行駛速度為100km/h

B)鄉(xiāng)村公路總長為90km

C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h

D)該記者在出發(fā)后4.5h到達采訪地

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018929日,由北京外交人員服務局主辦、北京外交人員房屋服務公司、北京市乒乓球運動協(xié)會承辦的首屆中外外交官友誼杯乒乓球賽在北京齊家園外交公寓體育運動中心舉辦,為了紀念這次活動,某校開展了乒乓球知識競賽,八年級甲、乙兩班分別選5名同學參加比賽,其成績?nèi)鐖D所示:

根據(jù)上圖填寫下表:

平均數(shù)

中位數(shù)

眾數(shù)

甲班

______

乙班

______

8

______

已知甲班5名同學成績的方差是,計算乙班同學成績的方差,并比較哪個班選手的成績較為穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1+2=180°,∠DAE=BCF,DA平分∠BDF

1AEFC會平行嗎?說明理由.

2ADBC的位置關系如何?為什么?

3BC平分∠DBE嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形的頂點C與原點O重合,點By軸的正半軸上,點A在反比例函數(shù)的圖象上,點D的坐標為.將菱形ABCD沿x軸正方向平移____個單位,可以使菱形的另一個頂點恰好落在該函數(shù)圖象上.

查看答案和解析>>

同步練習冊答案