【題目】已知:如圖,在長方形中,AB=4cm,BC=6cm,點中點,如果點在線段上以每秒2cm的速度由點向點運動,同時,點在線段上由點向點運動.設(shè)點運動時間為秒,若某一時刻BPECQP全等,求此時的值及點的運動速度.

【答案】見解析

【解析】

∠B=∠C=90°,可知存在以下兩種情況使△BPE≌△CQP,(1)當(dāng)BP=CP,BE=CQ;(2)當(dāng)BP=CQ,BE=CP設(shè)點Q的運動的時間為vcm/s,則由已知易得BP=2t,CP=6-2t,BE=2,CQ=vt,由此根據(jù)上述兩種情況分別列出關(guān)于tv的方程,解方程即可求得對應(yīng)的tv的值.

設(shè)點 的運動速度為v cm/s,則 ,,

∵∠B=∠C=90°,

∴存在以下兩種情況使BPE≌△CPQ.

(1)當(dāng)BP=CP,BE=CQ,BPE≌△CPQ,此時有:

,

解得,

(2)當(dāng)當(dāng)BP=CQ,BE=CPBPE≌△CPQ,

此時有:

解得,

綜上所述,的值為 秒,點的速度為;或的值為秒,點的速度為2 cm/s.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實黨的精準(zhǔn)扶貧政策,A、B兩城決定向C、D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運肥料的費用分別為20/噸和25/噸;從B城往C、D兩鄉(xiāng)運肥料的費用分別為15/噸和24/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.

(1)A城和B城各有多少噸肥料?

(2)設(shè)從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求出最少總運費.

(3)由于更換車型,使A城運往C鄉(xiāng)的運費每噸減少a(0<a<6)元,這時怎樣調(diào)運才能使總運費最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在今年我市初中學(xué)業(yè)水平考試體育學(xué)科的女子800耐力測試中,某考點同時起跑的小瑩和小梅所跑的路程S(米)與所用時間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,下列說法正確的是(  )

A、小瑩的速度隨時間的增大而增大B、小梅的平均速度比小瑩的平均速度大

C、在起跑后180秒時,兩人相遇D、在起跑后50秒時,小梅在小瑩的前面

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=x2﹣m2(m>0且為常數(shù))的圖象與x軸交于點A、B(AB左側(cè)),與y軸交于C.

(1)求A,B,C三點的坐標(biāo)(用含m的式子表示);

(2)若∠ACB=90°,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊ABCD的中點,BD是對角線,AG∥DBCB的延長線于G

1)求證:△ADE≌△CBF;

2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】石景山區(qū)八角北路有一塊三角形空地(如圖1)準(zhǔn)備綠化,擬從點A出發(fā),將ABC分成面積相等的三個三角形,栽種三種不同的花草.

下面是小美的設(shè)計(如圖2).

作法:(1)作射線BM;

(2)在射線BM上順次截取BB1=B1B2=B2B3;

(3)連接B3C,分別過B1、B2B1C1B2C2B3C,交BC于點C1、C2;

(4)連接AC1、AC2.則

請回答,成立的理由是:

_____;

_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(x1,y1),點Q的坐標(biāo)為(x2,y2),且x1≠x2,y1≠y2,若PQ為某個等腰三角形的腰,且該等腰三角形的底邊與x軸平行,則稱該等腰三角形為點P,Q相關(guān)等腰三角形.下圖為點P,Q相關(guān)等腰三角形的示意圖.

(1)已知點A的坐標(biāo)為(0,1),點B的坐標(biāo)為(-,0),則點A,B相關(guān)等腰三角形的頂角為   °;

(2)若點C的坐標(biāo)為(0,,點D在直線y=4上,且C,D相關(guān)等腰三角形為等邊三角形,求直線CD的表達(dá)式;

(3)O的半徑為,點N在雙曲線y=﹣上.若在⊙O上存在一點M,使得點M、N相關(guān)等腰三角形為直角三角形,直接寫出點N的橫坐標(biāo)xN的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A(12,0),O為坐標(biāo)原點,P是線段OA上任一點(不含端點O、A),二次函數(shù)y1的圖象過P、O兩點,二次函數(shù)y2的圖象過P、A兩點,它們的開口均向下,頂點分別為B、C,射線OB與射線AC相交于點D.則當(dāng)OD=AD=9時,這兩個二次函數(shù)的最大值之和等于( 。

A. 8 B. 3 C. 2 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長為1個單位,以O為原點建立平面直角坐標(biāo)系,圓心為 A(3,0)的⊙Ay軸截得的弦長BC=8.

解答下列問題:

(1)求⊙A 的半徑;

(2)請在圖中將⊙A 先向上平移 6 個單位,再向左平移8個單位得到⊙D,并寫出圓心D的坐標(biāo);

(3)觀察你所畫的圖形,對⊙D ⊙A 的位置關(guān)系作出合情的猜想,并直接寫出你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案