【題目】如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.

(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時,求PB的長;
②直接寫出旋轉(zhuǎn)過程中線段PB長的最小值與最大值.

【答案】
(1)

證明:如圖1中,

∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,

∴AB=AC,AD=AE,∠DAB=∠CAE,

在△ADB和△AEC中,

∴△ADB≌△AEC,

∴BD=CE.


(2)

①解:(i)、如圖2中,當(dāng)點E在AB上時,BE=AB﹣AE=1.

∵∠EAC=90°,

∴CE= = ,

同(1)可證△ADB≌△AEC.

∴∠DBA=∠ECA.

∵∠PEB=∠AEC,

∴△PEB∽△AEC.

=

= ,

∴PB=

(ii)、如圖3中,當(dāng)點E在BA延長線上時,BE=3.

∵∠EAC=90°,

∴CE= = ,

同(1)可證△ADB≌△AEC.

∴∠DBA=∠ECA.

∵∠BEP=∠CEA,

∴△PEB∽△AEC,

= ,

=

∴PB= ,

綜上,PB=

②如圖4中,以A為圓心AD為半徑畫圓,當(dāng)CE在⊙A下方與⊙A相切時,PB的值最小.

理由:此時∠BCE最小,因此PB最小,(△PBC是直角三角形,斜邊BC為定值,∠BCE最小,因此PB最小)

∵AE⊥EC,

∴EC= = = ,

由(1)可知,△ABD≌△ACE,

∴∠ADB=∠AEC=90°,BD=CE=

∴∠ADP=∠DAE=∠AEP=90°,

∴四邊形AEPD是矩形,

∴PD=AE=1,

∴PB=BD﹣PD= ﹣1.

如圖5中,以A為圓心AD為半徑畫圓,當(dāng)CE在⊙A上方與⊙A相切時,PB的值最大.

理由:此時∠BCE最大,因此PB最大,(△PBC是直角三角形,斜邊BC為定值,∠BCE最大,因此PB最大)

∵AE⊥EC,

∴EC= = = ,

由(1)可知,△ABD≌△ACE,

∴∠ADB=∠AEC=90°,BD=CE=

∴∠ADP=∠DAE=∠AEP=90°,

∴四邊形AEPD是矩形,

∴PD=AE=1,

∴PB=BD+PD= +1.

綜上所述,PB長的最小值是 ﹣1,最大值是 +1.


【解析】(1)欲證明BD=CE,只要證明△ABD≌△ACE即可.(2)①分兩種情形a、如圖2中,當(dāng)點E在AB上時,BE=AB﹣AE=1.由△PEB∽△AEC,得 = ,由此即可解決問題.b、如圖3中,當(dāng)點E在BA延長線上時,BE=3.解法類似.②a、如圖4中,以A為圓心AD為半徑畫圓,當(dāng)CE在⊙A下方與⊙A相切時,PB的值最。産、如圖5中,以A為圓心AD為半徑畫圓,當(dāng)CE在⊙A上方與⊙A相切時,PB的值最大.分別求出PB即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑是2,AB是⊙O的弦,點P是弦AB上的動點,且1≤OP≤2,則弦AB所對的圓周角的度數(shù)是(
A.60°
B.120°
C.60°或120°
D.30°或150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1l2,且l3l1,l2分別交于A,B兩點,點PAB.

(1)試找出∠1,2,3之間的關(guān)系并說出理由;

(2)如果點PA,B兩點之間運動,問∠1,2,3之間的關(guān)系是否發(fā)生變化?

(3)如果點PA,B兩點外側(cè)運動,試探究∠1,2,3之間的關(guān)系(PA,B不重合).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年我市某公司分兩次采購了一批大蒜,第一次花費40萬元,第二次花費60萬元.已知第一次采購時每噸大蒜的價格比去年的平均價格上漲了500元,第二次采購時每噸大蒜的價格比去年的平均價格下降了500元,第二次的采購數(shù)量是第一次采購數(shù)量的兩倍.
(1)試問去年每噸大蒜的平均價格是多少元?
(2)該公司可將大蒜加工成蒜粉或蒜片,若單獨加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600元.由于出口需要,所有采購的大蒜必需在30天內(nèi)加工完畢,且加工蒜粉的大蒜數(shù)量不少于加工蒜片的大蒜數(shù)量的一半,為獲得最大利潤,應(yīng)將多少噸大蒜加工成蒜粉?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射線OA、OB、OC、OD、OE有公共端點O.

(1)若OA與OE在同一直線上(如圖1),試寫出圖中小于平角的角;

(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如圖2),求∠BOD的度數(shù);

(3)如圖3,若∠AOE=88°,∠BOD=30°,射OC繞點O在∠AOD內(nèi)部旋轉(zhuǎn)(不與OA、OD重合).探求:射線OC從OA轉(zhuǎn)到OD的過程中,圖中所有銳角的和的情況,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環(huán)城路垂直.如果小明站在南京路與八一街的交叉口,準(zhǔn)備去書店,按圖中的街道行走,最近的路程約為( 。

A、600mB、500m

C400mD、300m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】道路交通管理條例規(guī)定:小汽車在城街上行駛速度不得超過70千米/小時,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面對車速檢測儀A正前方30B處,過了2秒后,測得小汽車C與車速檢測儀A間距離為50米,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA⊥OB,AB⊥x軸于C,點A( ,1)在反比例函數(shù)y= 的圖象上.

(1)求反比例函數(shù)y= 的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點P,使SAOP= SAOB , 求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,A1B1A2. A2B2A3、A3B3A4……均為等邊三角形,若OA1=l,則A6B6A7 的邊長為【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

同步練習(xí)冊答案