【題目】如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環(huán)城路垂直.如果小明站在南京路與八一街的交叉口,準(zhǔn)備去書(shū)店,按圖中的街道行走,最近的路程約為( 。

A、600mB、500m

C、400mD300m

【答案】B

【解析】由于BCAD,那么有DAE=ACB,由題意可知ABC=DEA=90°,BA=ED,利用AAS可證ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根據(jù)圖可知從B到E的走法有兩種,分別計(jì)算比較即可.

解:如右圖所示,

BCAD,

∴∠DAE=ACB,

BCAB,DEAC,

∴∠ABC=DEA=90°,

AB=DE=400m,

∴△ABC≌△DEA,

EA=BC=300m,

在RtABC中,AC==500m,

CE=AC-AE=200,

從B到E有兩種走法:BA+AE=700m;BC+CE=500m

最近的路程是500m

故選B.

本題考查了平行線的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理.解題的關(guān)鍵是證明ABC≌△DEA,并能比較從B到E有兩種走法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,∠A=140°,D=80°.

(1)如圖1,若∠B=C,試求出∠C的度數(shù);

(2)如圖2,若∠ABC的角平分線BEDC于點(diǎn)E,且BEAD,試求出∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 , 且x1≠x2 , 則x1+x2=2,正確的個(gè)數(shù)為(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)O在邊AB上,⊙O過(guò)點(diǎn)B且分別與邊AB,BC相交于點(diǎn)D,E,EF⊥AC,垂足為F.

(1)求證:直線EF是⊙O的切線;
(2)當(dāng)直線DF與⊙O相切時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).

(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點(diǎn)A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時(shí),求PB的長(zhǎng);
②直接寫(xiě)出旋轉(zhuǎn)過(guò)程中線段PB長(zhǎng)的最小值與最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三角形ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點(diǎn),DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,則△DEF的面積與△ABC的面積之比等于(
A.1:3
B.2:3
C. :2
D. :3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩條筆直的街道AB,CD相交于點(diǎn)O,街道OE,OF分別平分∠AOC,BOD,比較∠1與∠2的關(guān)系,并說(shuō)明街道EOF是筆直的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作探究:如圖,ABC在平面直角坐標(biāo)系中,其中,點(diǎn)A,B,C的坐標(biāo)分別為A(–2,1),B(–4,5),C(–5,2).

(1)作ABC關(guān)于直線lx=–1對(duì)稱的A1B1C1,其中,點(diǎn)A, B,C的對(duì)稱點(diǎn)分別為點(diǎn)A1,B1,C1;

(2)寫(xiě)出點(diǎn)C1的坐標(biāo)__________;

(3)在平面直角坐標(biāo)系中有一點(diǎn)P位于第四象限,其坐標(biāo)表示為Pm,n),則點(diǎn)P關(guān)于直線l的對(duì)稱點(diǎn)Q的坐標(biāo)表示為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的小正方形網(wǎng)格中,AOB的頂點(diǎn)均在格點(diǎn)上.

(1)B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)坐標(biāo)為

(2)將AOB向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度得到A1O1B1,請(qǐng)畫(huà)出A1O1B1;

(3)在(2)的條件下,AOB邊AB上有一點(diǎn)P的坐標(biāo)為(a,b),則平移后對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案