【題目】一個(gè)涵洞成拋物線形,它的截面如圖,現(xiàn)測(cè)得:當(dāng)水面寬AB=1.6 m時(shí),涵洞頂點(diǎn)與水面的距離為2.4 m,離開(kāi)水面1.5 m處是涵洞寬ED.
(1)求拋物線的解析式;
(2)求ED的長(zhǎng).
【答案】(1)y=-x2 (2)
【解析】試題分析:(1)根據(jù)這個(gè)函數(shù)過(guò)原點(diǎn),那么可設(shè)為y=kx2,有CO和AB的長(zhǎng),那么點(diǎn)A的坐標(biāo)應(yīng)該是(﹣0.8,﹣2.4),利用待定系數(shù)法即可解決;
(2)根據(jù)題意令y=﹣(2.4﹣1.5),求出x的值即可得.
試題解析:解:(1)設(shè)為y=kx2,由CO和AB的長(zhǎng),那么A的坐標(biāo)應(yīng)該是(﹣0.8,﹣2.4),將其代入函數(shù)中得:﹣2.4=0.8×0.8×k,解得k=﹣.
那么函數(shù)的解析式就是:y=﹣x2;
(2)根據(jù)題意,當(dāng)y=﹣0.9時(shí),﹣x2=﹣0.9,解得:x=±,∴ED=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫出下列各點(diǎn)的坐標(biāo): A′ ;B′ ;C′ ;
(2)若點(diǎn)P(a,b)是△ABC內(nèi)部一點(diǎn),則平移后△A′B′C′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為 ;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,點(diǎn)O是AC邊上一點(diǎn),連接BO交AD于F,OE⊥OB交BC邊于點(diǎn)E.
(1)求證:△ABF∽△COE;
(2)當(dāng)O為AC邊中點(diǎn), 時(shí),如圖2,求的值;
(3)當(dāng)O為AC邊中點(diǎn), 時(shí),請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC,BD于點(diǎn)E,P,連接OE,∠ADC=60°,,則下列結(jié)論:①∠CAD=30°②③④,正確的個(gè)數(shù)是______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD和Rt△ABE,∠AEB=90°,將△ABE繞點(diǎn)O旋轉(zhuǎn)180°得到△CDF.
(1)在圖中畫(huà)出點(diǎn)O和△CDF;
(2)若∠ABC=130°,直接寫出∠AEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)內(nèi)角為60°的菱形 ABCD中,AB=2,點(diǎn)P以每秒1cm的速度從點(diǎn)A出發(fā),沿AD→DC的路徑運(yùn)動(dòng),到點(diǎn)C停止,過(guò)點(diǎn)P 作PQ⊥BD,PQ 與邊AD(或邊CD)交于點(diǎn)Q,△ABQ的面積y(cm2)與點(diǎn)P 的運(yùn)動(dòng)時(shí)間x(秒)的函數(shù)圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)已知:如圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.試解答下列問(wèn)題:
(1)在圖1中,請(qǐng)直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系: ;
(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù): 個(gè);
(3)在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.利用(1)的結(jié)論,可求得∠P的度數(shù)是 ;
(4)如果圖2中∠D和∠B為任意角時(shí),其他條件不變,請(qǐng)直接寫出∠P與∠D、∠B之間存在的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AB//EF,∠2=2∠1
(1)證明∠FEC=∠FCE;
(2)如圖2,M為AC上一點(diǎn),N為FE延長(zhǎng)線上一點(diǎn),且∠FNM=∠FMN,則∠NMC與∠CFM有何數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式,能用平方差公式計(jì)算的是( 。
A.(2a+b)(2b﹣a)B.(+1)(﹣-1)
C.(2a﹣3b)(﹣2a+3b)D.(﹣a﹣2b)(﹣a+2b)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com