【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸、y軸的交點(diǎn)分別為A、B,直線y=﹣2x+12交x軸于C,兩條直線的交點(diǎn)為D;點(diǎn)P是線段DC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PE⊥x軸,交x軸于點(diǎn)E,連接BP;
(1)求△DAC的面積;
(2)在線段DC上是否存在一點(diǎn)P,使四邊形BOEP為矩形;若存在,寫(xiě)出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由;
(3)若四邊形BOEP的面積為S,設(shè)P點(diǎn)的坐標(biāo)為(x,y),求出S關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
【答案】(1)S△DAC=20;(2)存在, 點(diǎn)P的坐標(biāo)是(5,2);(3)S=﹣x2+7x(4≤x<6).
【解析】
(1)想辦法求出A、D、C三點(diǎn)坐標(biāo)即可解決問(wèn)題;
(2)存在.根據(jù)OB=PE=2,利用待定系數(shù)法即可解決問(wèn)題;
(3)利用梯形的面積公式計(jì)算即可;
(1)當(dāng)y=0時(shí), x+2=0,
∴x=﹣4,點(diǎn)A坐標(biāo)為(﹣4,0)
當(dāng)y=0時(shí),﹣2x+12=0,
∴x=6,點(diǎn)C坐標(biāo)為(6,0)
由題意,解得,
∴點(diǎn)D坐標(biāo)為(4,4)
∴S△DAC=×10×4=20.
(2)存在,∵四邊形BOEP為矩形,
∴BO=PE
當(dāng)x=0時(shí),y=2,點(diǎn)B坐標(biāo)為(0,2),
把y=2代入y=﹣2x+12得到x=5,
點(diǎn)P的坐標(biāo)是(5,2).
(3)∵S=(OB+PE)OE
∴S=(2﹣2x+12)x=﹣x2+7x(4≤x<6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮計(jì)劃暑期結(jié)伴參加志愿者活動(dòng).小明想?yún)⒓泳蠢戏⻊?wù)活動(dòng),小亮想?yún)⒓游拿鞫Y儀宣傳活動(dòng).他們想通過(guò)做游戲來(lái)決定參加哪個(gè)活動(dòng),于是小明設(shè)計(jì)了一個(gè)游戲,游戲規(guī)則是:在三張完全相同的卡片上分別標(biāo)記4、5、6三個(gè)數(shù)字,一人先從三張卡片中隨機(jī)抽出一張,記下數(shù)字后放回,另一人再?gòu)闹须S機(jī)抽出一張,記下數(shù)字,若抽出的兩張卡片標(biāo)記的數(shù)字之和為偶數(shù),則按照小明的想法參加敬老服務(wù)活動(dòng),若抽出的兩張卡片標(biāo)記的數(shù)字之和為奇數(shù),則按照小亮的想法參加文明禮儀宣傳活動(dòng).你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明到青城山游玩,乘坐纜車(chē),當(dāng)?shù)巧嚼|車(chē)的吊箱經(jīng)過(guò)點(diǎn)A到達(dá)點(diǎn)B時(shí),它經(jīng)過(guò)了200 m,纜車(chē)行駛的路線與水平夾角∠α=16°,當(dāng)纜車(chē)?yán)^續(xù)由點(diǎn)B到達(dá)點(diǎn)D時(shí),它又走過(guò)了200 m,纜車(chē)由點(diǎn)B到點(diǎn)D的行駛路線與水平夾角∠β=42°,求纜車(chē)從點(diǎn)A到點(diǎn)D垂直上升的距離.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC=90°,對(duì)角線AC,BD交于點(diǎn)O,DE平分∠ADC交BC于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘漁船正自西向東航行追趕魚(yú)群,在A處望見(jiàn)島C在船的北偏東60°方向,前進(jìn)20海里到達(dá)B處,此時(shí)望見(jiàn)島C在船的北偏東30°方向,以島C為中心的12海里內(nèi)為軍事演習(xí)的危險(xiǎn)區(qū).請(qǐng)通過(guò)計(jì)算說(shuō)明:如果這艘漁船繼續(xù)向東追趕魚(yú)群是否有進(jìn)入危險(xiǎn)區(qū)的可能.(參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑0C為2,則弦BC的長(zhǎng)為( 。
A. 1
B.
C. 2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理有著悠久的歷史,它曾引起很多人的興趣,1955年希臘發(fā)型了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成,它可以驗(yàn)證勾股定理.在如圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQO使得∠O=90°,點(diǎn)Q在在直角坐標(biāo)系y軸正半軸上,點(diǎn)P在x軸正半軸上,點(diǎn)O與原點(diǎn)重合,∠OQP=60°,點(diǎn)H在邊QO上,點(diǎn)D、E在邊PO上,點(diǎn)G、F在邊PQ上,那么點(diǎn)P坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)我市開(kāi)展了“尋找雷鋒足跡”的活動(dòng),某中學(xué)為了了解七年級(jí)800名學(xué)生在“學(xué)雷鋒活動(dòng)月”中做好事的情況,隨機(jī)調(diào)查了七年級(jí)50名學(xué)生在一個(gè)月內(nèi)做好事的次數(shù),并將所得數(shù)據(jù)繪制成統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:
①所調(diào)查的七年級(jí)50名學(xué)生在這個(gè)月內(nèi)做好事次數(shù)的平均數(shù)是 ,眾數(shù)是 ,極差是 :
②根據(jù)樣本數(shù)據(jù),估計(jì)該校七年級(jí)800名學(xué)生在“學(xué)雷鋒活動(dòng)月”中做好事不少于4次的人數(shù).
(2)甲口袋有2個(gè)相同的小球,它們分別寫(xiě)有數(shù)字1和2;乙口袋中裝有3個(gè)相同的小球,它們分別寫(xiě)有數(shù)字3、4和5,從這兩個(gè)口袋中各隨機(jī)地取出1個(gè)小球.
①用“樹(shù)狀圖法”或“列表法”表示所有可能出現(xiàn)的結(jié)果;
②取出的兩個(gè)小球上所寫(xiě)數(shù)字之和是偶數(shù)的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com