【題目】第5代移動通信技術(shù)簡稱5G,某地已開通5G業(yè)務(wù),經(jīng)測試5G下載速度是4G下載速度的15倍,小明和小強(qiáng)分別用5G與4G下載一部600兆的公益片,小明比小強(qiáng)所用的時間快140秒,求該地4G與5G的下載速度分別是每秒多少兆?
【答案】該地4G的下載速度是每秒4兆,則該地5G的下載速度是每秒60兆.
【解析】
首先設(shè)該地4G的下載速度是每秒x兆,則該地5G的下載速度是每秒15x兆,根據(jù)題意可得等量關(guān)系:4G下載600兆所用時間﹣5G下載600兆所用時間=140秒.然后根據(jù)等量關(guān)系,列出分式方程,再解即可.
解:設(shè)該地4G的下載速度是每秒x兆,則該地5G的下載速度是每秒15x兆,
由題意得:﹣=140,
解得:x=4,
經(jīng)檢驗(yàn):x=4是原分式方程的解,且符合題意,
15x =15×4=60,
答:該地4G的下載速度是每秒4兆,則該地5G的下載速度是每秒60兆.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,是上一點(diǎn),且,將沿過點(diǎn)的一條直線翻折,點(diǎn)恰好落在邊上的點(diǎn)處,折痕交于點(diǎn),則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)的圖像與軸交于兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)是拋物線第象限上一點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,連接,如果點(diǎn)關(guān)于直線的對稱點(diǎn)落在軸下方(含軸),求的取值范圍;
(3)如圖2,連接將繞平面內(nèi)某點(diǎn)順時針旋轉(zhuǎn),得到點(diǎn)的對應(yīng)點(diǎn)分別是點(diǎn)、若的兩個項(xiàng)點(diǎn)恰好落在拋物線上,請直接寫出點(diǎn)的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,為上一點(diǎn),點(diǎn)是半徑上一動點(diǎn)(不與,重合),過點(diǎn)作射線,分別交弦,于,兩點(diǎn),在射線上取點(diǎn),使.
(1)求證:是的切線.
(2)當(dāng)是的中點(diǎn)時;
①若,求證:以,,,為頂點(diǎn)的四邊形是菱形;
②若,且,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑, 于點(diǎn) ,是上一點(diǎn),且,延長至點(diǎn),連接,使,延長與交于點(diǎn),連結(jié),.
(1)連結(jié),求證:;
(2)求證:是的切線;
(3)若,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2過點(diǎn)A(﹣3,).
(1)求拋物線的解析式;
(2)已知直線l過點(diǎn)A,M(,0)且與拋物線交于另一點(diǎn)B,與y軸交于點(diǎn)C,求證:MC2=MAMB;
(3)若點(diǎn)P,D分別是拋物線與直線l上的動點(diǎn),以OC為一邊且頂點(diǎn)為O,C,P,D的四邊形是平行四邊形,求所有符合條件的P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋中有標(biāo)號為1,2,3,4的四個小球,除數(shù)字不同外,小球沒有任何區(qū)別,摸球前先攪拌均勻,每次摸一個球
(1)摸出一個球,摸到標(biāo)號為偶數(shù)的概率為 .
(2)從袋中不放回地摸兩次,用列表或樹狀圖求出兩球標(biāo)號數(shù)字為一奇一偶的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k≠8)的圖像經(jīng)過點(diǎn)A(1,6).
(1)求k的值;
(2)如圖,過點(diǎn)A作直線AC與函數(shù)的圖像交于點(diǎn)B,與x軸交于點(diǎn)C,且AB=2BC,求直線AC的解析式;
(3)在(2)的條件下,連接OA,過y軸的正半軸上的一點(diǎn)D作直線DE∥x軸,分別交線段AC、OA于點(diǎn)E、F,若△AEF的面積為,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,C是上一點(diǎn),D是的中點(diǎn),為延長線上一點(diǎn),AE切于A,AC與BD交于點(diǎn)H,與OE交于點(diǎn)F,連結(jié)EC.
(1)求證:EC是的切線;
(2)若DH=9,,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com