精英家教網 > 初中數學 > 題目詳情
(2013•臺州)已知△A1B1C1,△A2B2C2的周長相等,現有兩個判斷:
①若A1B1=A2B2,A1C1=A2C2,則△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,則△A1B1C1≌△A2B2C2,
對于上述的兩個判斷,下列說法正確的是( 。
分析:根據SSS即可推出△A1B1C1≌△A2B2C2,判斷①正確;根據AAA不能推出兩三角形全等,即可判斷②.
解答:解:∵△A1B1C1,△A2B2C2的周長相等,A1B1=A2B2,A1C1=A2C2,
∴B1C1=B2C2,
∴△A1B1C1≌△A2B2C2(SSS),∴①正確;
∵∠A1=∠A2,∠B1=∠B2,
∴△A1B1C1∽△A2B2C2
∵△A1B1C1,△A2B2C2的周長相等,
∴△A1B1C1≌△A2B2C2
∴②正確;
故選D.
點評:本題考查了全等三角形的判定的應用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判斷兩三角形全等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•臺州)如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉一周,在此過程中DE的最小值為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•臺州)已知關于x,y的方程組
mx+ny=7
2mx-3ny=4
的解為
x=1
y=2
,求m,n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•臺州)如圖1,已知直線l:y=-x+2與y軸交于點A,拋物線y=(x-1)2+k經過點A,其頂點為B,另一拋物線y=(x-h)2+2-h(h>1)的頂點為D,兩拋物線相交于點C.
(1)求點B的坐標,并說明點D在直線l上的理由;
(2)設交點C的橫坐標為m.
 ①交點C的縱坐標可以表示為:
(m-1)2+1
(m-1)2+1
(m-h)2-h+2
(m-h)2-h+2
,由此進一步探究m關于h的函數關系式;
 ②如圖2,若∠ACD=90°,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•臺州)如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“好玩三角形”.
(1)請用直尺和圓規(guī)畫一個“好玩三角形”;
(2)如圖在Rt△ABC中,∠C=90°,tanA=
3
2
,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB-BC和AD-DC向終點C運動,記點P經過的路程為s.
①當β=45°時,若△APQ是“好玩三角形”,試求
a
s
的值;
②當tanβ的取值在什么范圍內,點P,Q在運動過程中,有且只有一個△APQ能成為“好玩三角形”.請直接寫出tanβ的取值范圍.
(4)(本小題為選做題,作對另加2分,但全卷滿分不超過150分)
依據(3)的條件,提出一個關于“在點P,Q的運動過程中,tanβ的取值范圍與△APQ是‘好玩三角形’的個數關系”的真命題(“好玩三角形”的個數限定不能為1)

查看答案和解析>>

同步練習冊答案