【題目】在中,若存在一個內(nèi)角角度,是另外一個內(nèi)角角度的倍(為大于1的正整數(shù)),則稱為倍角三角形.例如,在中,,,,可知,所以為3倍角三角形.
(1)在中,,,則為________倍角三角形;
(2)若是3倍角三角形,且其中一個內(nèi)角的度數(shù)是另外一個內(nèi)角的余角的度數(shù)的,求的最小內(nèi)角.
(3)若是2倍角三角形,且,請直接寫出的最小內(nèi)角的取值范圍.
【答案】(1)4;(2)的最小內(nèi)角為15°或9°或;(3)30°<x<45°.
【解析】
(1)根據(jù)三角形內(nèi)角和定理求出∠C的度數(shù),再根據(jù)倍角三角形的定義判斷即可得到答案;
(2) 根據(jù)△DEF是3倍角三角形,必定有一個內(nèi)角是另一個內(nèi)角的3倍,然后根據(jù)這兩個角之間的關(guān)系,分情況進(jìn)行解答即可得到答案;
(3) 可設(shè)未知數(shù)表示2倍角三角形的各個內(nèi)角,然后列不等式組確定最小內(nèi)角的取值范圍.
解:(1)∵在中,,,
∴∠C=180°-55°-25°=100°,
∴∠C=4∠B,
故為4倍角三角形;
(2) 設(shè)其中一個內(nèi)角為x°,3倍角為3x°,則另外一個內(nèi)角為:
①當(dāng)小的內(nèi)角的度數(shù)是3倍內(nèi)角的余角的度數(shù)的時,
即:x=(90°-3x),
解得:x=15°,
②3倍內(nèi)角的度數(shù)是小內(nèi)角的余角的度數(shù)的時,
即:3x=(90°-x),解得:x=9°,
③當(dāng)時,
解得:,
此時:=,因此為最小內(nèi)角,
因此,△DEF的最小內(nèi)角是9°或15°或.
(3) 設(shè)最小內(nèi)角為x,則2倍內(nèi)角為2x,第三個內(nèi)角為(180°-3x),由題意得:
2x<90°且180°-3x<90°,
∴30°<x<45°,
答:△MNP的最小內(nèi)角的取值范圍是30°<x<45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B的長為( ).
A. 1 B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課題小組為了了解某品牌電動自行車的銷售情況,對某專賣店第一季度該品牌A,B,C,D四種型號的銷售做了統(tǒng)計(jì),繪制成如下兩幅統(tǒng)計(jì)圖(均不完整)
(1)該店第一季度售出這種品牌的電動自行車共多少輛?
(2)把兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該專賣店計(jì)劃訂購這四款型號的電動自行車1800輛,求C型電動自行車應(yīng)訂購多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(diǎn)(點(diǎn)D與A,B不重合),連接CD,過點(diǎn)C作CE⊥CD,且CE=CD,連接DE交BC于點(diǎn)F,連接BE.
(1)求證:AB⊥BE;
(2)當(dāng)AD=BF時,求∠BEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程組和不等式解應(yīng)用題:
為了響應(yīng)某市的“四個一”工程,培養(yǎng)學(xué)生的愛國主義情懷,某校學(xué)生和帶隊(duì)老師在5月下旬某天集體乘車去參觀抗日戰(zhàn)爭紀(jì)念館.已知學(xué)生的數(shù)量是帶隊(duì)老師的12倍多20人,學(xué)生和老師的總?cè)藬?shù)共540人.
(1)請求出去參觀抗日戰(zhàn)爭紀(jì)念館學(xué)生和老師各多少人?
(2)如果學(xué)校準(zhǔn)備租賃型大巴車和型大巴車共14輛,(其中型大巴車最多有7輛)已知型大巴車每車最多可以載35人,日租金為2000元,其中型大巴車每車最多可以載45人,日租金為3000元請求出最經(jīng)濟(jì)的租賃車輛方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形,過做于點(diǎn),,若在平行四邊形內(nèi)取一點(diǎn),則該點(diǎn)到平行四邊形的四個頂點(diǎn)的距離均不小于1的概率為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某城市為鼓勵居民節(jié)約用水,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的水費(fèi),月用水量不超過20m3時,按2元/m3計(jì)費(fèi);月用水量超過20m3時,超過部分按2.6元/m3計(jì)費(fèi).設(shè)每戶家庭的月用水量為xm3時,應(yīng)交水費(fèi)y元.
(1)試求出0≤x≤20和x>20時,y與x之間的函數(shù)關(guān)系;
(2)小明家第二季度用水量的情況如下:
月份 | 四月 | 五月 | 六月 |
用水量(m3) | 15 | 17 | 21 |
小明家這個季度共繳納水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠ABC=90°,D為AC中點(diǎn),點(diǎn)P是線段AD上的一點(diǎn),點(diǎn)P與點(diǎn)A,點(diǎn)D不重合),連接BP.將△ABP繞點(diǎn)P按順時針方向旋轉(zhuǎn)α角(0°<α<180°),得到△A1B1P,連接A1B1、BB1
(1)如圖①,當(dāng)0°<α<90°,在α角變化過程中,請證明∠PAA1=∠PBB2 .
(2)如圖②,直線AA1與直線PB、直線BB1分別交于點(diǎn)E,F(xiàn).設(shè)∠ABP=β,當(dāng)90°<α<180°時,在α角變化過程中,是否存在△BEF與△AEP全等?若存在,求出α與β之間的數(shù)量關(guān)系;若不存在,請說明理由;
(3)如圖③,當(dāng)α=90°時,點(diǎn)E、F與點(diǎn)B重合.直線A1B與直線PB相交于點(diǎn)M,直線BB′與AC相交于點(diǎn)Q.若AB= ,設(shè)AP=x,求y關(guān)于x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作探究:
(1)實(shí)踐:如圖1, 中,為邊上的中線,的面積記為,的面積記為.則.
(2)探究:在圖2中,、分別為四邊形的邊、的中點(diǎn),四邊形的面積記為,陰影部分面積記為,則和之間滿足的關(guān)系式為______:
(3)解決問題:
在圖3中,、、、分別為任意四邊形的邊、、、的中點(diǎn),并且圖中陰影部分的面積為平方厘米,求圖中四個小三角形的面積和,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com