【題目】某課題小組為了了解某品牌電動(dòng)自行車的銷售情況,對某專賣店第一季度該品牌A,B,C,D四種型號(hào)的銷售做了統(tǒng)計(jì),繪制成如下兩幅統(tǒng)計(jì)圖(均不完整)

(1)該店第一季度售出這種品牌的電動(dòng)自行車共多少輛?
(2)把兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該專賣店計(jì)劃訂購這四款型號(hào)的電動(dòng)自行車1800輛,求C型電動(dòng)自行車應(yīng)訂購多少輛?

【答案】
(1)解:210÷35%=600(輛).

答:該店第一季度售出這種品牌的電動(dòng)自行車共600輛


(2)解:C品牌:600×30%=180;

A品牌:150÷600=25%;D品牌:60÷600=10%


(3)解:1800×30%=540(輛).

答:C型電動(dòng)自行車應(yīng)訂購540輛


【解析】(1)根據(jù)B種型號(hào)在兩個(gè)圖中的數(shù)值,求出該店第一季度售出這種品牌的電動(dòng)自行車的值;(2)求出C品牌和A品牌的值;(3)根據(jù)扇形圖中C的百分比,求出C型電動(dòng)自行車應(yīng)訂購的值.
【考點(diǎn)精析】本題主要考查了扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的相關(guān)知識(shí)點(diǎn),需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的弦,OA⊥OD,AB,OD相交于點(diǎn)C,且CD=BD.

(1)判斷BD與圓O的位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)OA=3,OC=1時(shí),求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請?jiān)跈M線上和括號(hào)內(nèi)填上推導(dǎo)內(nèi)容或依據(jù).

如圖,已知 , ,求證:

證明: (已知),

),

).

).

).

(已知),

).

).

).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點(diǎn)A關(guān)于拋物線對稱軸的對稱點(diǎn)坐標(biāo)為( )
A.(﹣3,7)
B.(﹣1,7)
C.(﹣4,10)
D.(0,10)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校區(qū)內(nèi)有甲、乙兩塊大小一樣的長方形地塊,地塊長30m,寬25m,現(xiàn)要在長方形地塊內(nèi)分別修筑如圖所示的兩條平行四邊形小路(圖中陰影部分),余下的部分綠化.現(xiàn)已知ABCD1m,EFGH1m,記甲、乙地塊的綠化面積分別為S1、S2,則S1、S2的大小關(guān)系是(

A.S1<S2B.S1=S2C.S1>S2D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師為學(xué)校購買運(yùn)動(dòng)會(huì)的獎(jiǎng)品后,回學(xué)校向后勤處趙主任交賬說:我買了兩種書共105本,單價(jià)分別為8元和12元,買書前我領(lǐng)了1600元,現(xiàn)在還余518元.趙主任算了一下說:你肯定搞錯(cuò)了.

1)趙主任為什么說他搞錯(cuò)了,請你用方程組的知識(shí)給予解釋;

2)王老師連忙拿出購物發(fā)票,發(fā)現(xiàn)的確弄錯(cuò)了,因?yàn)樗買了一個(gè)筆記本,但筆記本的單價(jià)已模糊不清,只能辨認(rèn)出應(yīng)為小于5元的整數(shù),筆記本的單價(jià)可能為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格紙中,

(1)作出△ABC關(guān)于MN對稱的圖形△A1B1C1

(2)說明△A2B2C2可以由△A1B1C1經(jīng)過怎樣的平移變換得到?

(3)MN所在直線為x軸,AA1的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系xOy,試在x軸上找一點(diǎn)P,使得PA1+PB2最小,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,若存在一個(gè)內(nèi)角角度,是另外一個(gè)內(nèi)角角度的倍(為大于1的正整數(shù)),則稱倍角三角形.例如,在中,,,,可知,所以3倍角三角形.

1)在中,,,則________倍角三角形;

2)若3倍角三角形,且其中一個(gè)內(nèi)角的度數(shù)是另外一個(gè)內(nèi)角的余角的度數(shù)的,求的最小內(nèi)角.

3)若2倍角三角形,且,請直接寫出的最小內(nèi)角的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=110°,在邊AN上取B,C,使AB=BC.點(diǎn)P為邊AM上一點(diǎn),將△APB沿PB折疊,使點(diǎn)A落在角內(nèi)點(diǎn)E處,連接CE,則∠BPE+∠BCE=°.

查看答案和解析>>

同步練習(xí)冊答案