【題目】如圖,點D是等邊△ABC中BC邊的延長線上一點,且AC=CD,以AB為直徑作⊙O,分別交邊AC、BC于點E、點F
(1)求證:AD是⊙O的切線;
(2)連接OC,交⊙O于點G,若AB=4,求線段CE、CG與圍成的陰影部分的面積S.
【答案】(1)詳見解析;(2)
【解析】
(1)已知AB為直徑,只需證明∠BAD=90°即可,根據(jù)直角三角形判定定理證明△ABD為直角三角形即可求出∠DAB=90°,根據(jù)切線的判定推出即可.
(2)連接OE,分別求出△AOE、△AOC,扇形OEG的面積,即可求出答案.
(1)∵△ABC為等邊三角形,
∴AC=BC,
又∵AC=CD,
∴AC=BC=CD,
∴△ABD為直角三角形,
∴AB⊥AD,
∵AB為直徑,
∴AD是⊙O的切線.
(2)連接OE,如下圖所示:
∵OA=OE,∠BAC=60°,
∴△OAE是等邊三角形,
∴∠AOE=60°,
∵CB=BA,OA=OB,
∴CO⊥AB,
∴∠AOC=90°,
∴∠EOC=30°,
∵△ABC是邊長為4的等邊三角形,
∴AO=2,由勾股定理得:OC=,同理等邊△AOE高是,
S陰影=S△AOC﹣S等邊△AOE﹣S扇形EOG.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等邊三角形的內(nèi)切圓半徑為外接圓半徑為,平面內(nèi)任意一點到等邊三角形中心的距離為若滿足則稱點叫做等邊三角形的中心關(guān)聯(lián)點.在平面直角坐標(biāo)系中,等邊的三個頂點的坐標(biāo)分別為.
(1)①等邊中心的坐標(biāo)為 ;
②已知點在中,是等邊的中心關(guān)聯(lián)點的是 ;
(2)如圖1,過點作直線交軸正半軸于使.
①若線段上存在等邊的中心關(guān)聯(lián)點求的取值范圍;
②將直線向下平移得到直線當(dāng)滿足什么條件時,直線上總存在等邊的中心關(guān)聯(lián)點;
(3)如圖2,點為直線上一動點,的半徑為當(dāng)從點出發(fā),以每秒個單位的速度向右移動,運動時間為秒.是否存在某一時刻使得上所有點都是等邊的中心關(guān)聯(lián)點?如果存在,請直接寫出所有符合題意的的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,點E為BC的中點,連接OD、DE.
(1)求證:DE是⊙O的切線;
(2)若∠BAC=30°,AB=12,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于點D,點O在AB上,⊙O經(jīng)過A,D兩點,交AB于點E,交AC于點F
(1)求證:BC是⊙O的切線;
(2)若⊙O半徑是2cm,F是弧AD的中點,求陰影部分的面積(結(jié)果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,且∠AEC=∠DCE,則下列結(jié)論不正確的是( )
A.S△AFD=2S△EFBB.BF=DF
C.AE=DCD.∠AEB=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若一次函數(shù)y=ax+b和反比例函數(shù)y=-滿足a+c=2b,則稱為y=ax2+bx+c為一次函數(shù)和反比例函數(shù)的“等差”函數(shù).
(1)判斷y=x+b和y=-是否存在“等差”函數(shù)?若存在,寫出它們的“等差”函數(shù);
(2)若y=5x+b和y=-存在“等差”函數(shù),且“等差”函數(shù)的圖象與y=-的圖象的一個交點的橫坐標(biāo)為1,求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(3)若一次函數(shù)y=ax+b和反比例函數(shù)y=-(其中a>0,c>0,a=b)存在“等差”函數(shù),且y=ax+b與“等差”函數(shù)有兩個交點A(x1,y1)、B(x2,y2),試判斷“等差”函數(shù)圖象上是否存在一點P(x,y)(其中x1<x<x2),使得△ABP的面積最大?若存在,用c表示△ABP的面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)市政府號召,某校開展了“四城同創(chuàng),共建美好家園”活動周,活動周設(shè)置了“A:文明禮儀,B:生態(tài)環(huán)境,C:交通安全,D:衛(wèi)生保潔”四個主題,每個學(xué)生選一個主題參與.為了解活動開展情況,學(xué)校隨機抽取了部分學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下條形統(tǒng)計圖和扇形統(tǒng)計圖.
(1)本次隨機調(diào)查的學(xué)生人數(shù)是 人;
(2)在扇形統(tǒng)計圖中,“C”所在扇形的圓心角等于 度;
(3)如果該校共有學(xué)生2400人,請你估計參與“文明禮儀”主題的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣3,y1),B(2,y2)均在拋物線y=ax2+bx+c上,點P(m,n)是該拋物線的頂點,若y1>y2≥n,則m的取值范圍是( )
A.﹣3<m<2B.﹣<m<-C.m>﹣D.m>2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《鄭州市城市生活垃圾分類管理辦法》于2019年12月起施行,某社區(qū)要投放兩種垃圾桶,負(fù)責(zé)人小李調(diào)查發(fā)現(xiàn):
購買數(shù)量少于個 | 購買數(shù)量不少于個 | |
原價銷售 | 以原價的折銷售 | |
原價銷售 | 以原價的折銷售 |
若購買種垃圾桶個,種垃圾桶個,則共需要付款元;若購買種垃圾桶個,種垃圾桶個,則共需付款元.
(1)求兩種垃圾桶的單價各為多少元?
(2)若需要購買兩種垃圾桶共個,且種垃圾桶不多于種垃圾桶數(shù)量的,如何購買使花費最少?最少費用為多少元?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com