【題目】如圖,在RtABC中,∠C90°,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)OAB上,O經(jīng)過AD兩點(diǎn),交AB于點(diǎn)E,交AC于點(diǎn)F

1)求證:BCO的切線;

2)若O半徑是2cm,F是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號)

【答案】(1)詳見解析;(2)2πcm2

【解析】

1)連接OD,只要證明ODAC即可解決問題;
2)根據(jù)圓周角定理得到,求出∠EOD=60°,根據(jù)扇形的面積公式即可得到結(jié)論.

解:(1)連接OD,

OAOD,

∴∠OAD=∠ODA,

∵∠OAD=∠DAC,

∴∠ODA=∠DAC,

ODAC

∴∠ODB=∠C90°,

ODBC,

BCO的切線;

2)∵AD平分∠BAC,

F是弧AD的中點(diǎn),

,

∴∠EOD60°,

OD2,

BD2,

∴陰影部分的面積=SBDOS扇形EOD×2×22πcm2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).垂直于軸的直線與拋物線交于點(diǎn),,與直線交于點(diǎn),若,記,則的取值范圍為(

A.5s6B.6s7C.7s8D.8s9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖點(diǎn)A是直線AM與⊙O的交點(diǎn),點(diǎn)B在⊙O,BDAM垂足為D,BD與⊙O交于點(diǎn)C,OC平分∠AOB,B=60°

1)求證AM是⊙O的切線;

2)若DC=2,求圖中陰影部分的面積.(結(jié)果保留π和根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】賀歲片《流浪地球》被稱為開啟了中國科幻片的大門,2019也被稱為中國科幻片的元年.某電影院為了全面了解觀眾對《流浪地球》的滿意度情況,進(jìn)行隨機(jī)抽樣調(diào)查,分為四個類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).根據(jù)以上信息,解答下列問題:

1)本次接受調(diào)查的觀眾共有   人;

2)扇形統(tǒng)計(jì)圖中,扇形C的圓心角度數(shù)是   

3)請補(bǔ)全條形統(tǒng)計(jì)圖;

4)春節(jié)期間,該電影院來觀看《流浪地球》的觀眾約3000人,請估計(jì)觀眾中對該電影滿意(AB、C類視為滿意)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中.

利用尺規(guī)作圖,在BC邊上求作一點(diǎn)P,使得點(diǎn)PAB的距離的長等于PC的長;

利用尺規(guī)作圖,作出中的線段PD.

要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,為直徑作半圓點(diǎn)在半圓上,連結(jié)連結(jié)邊上的高,過點(diǎn)的延長線于點(diǎn),于點(diǎn)

求證

當(dāng)的中點(diǎn)時,求的值

如圖2,取的中點(diǎn)連結(jié).在點(diǎn)運(yùn)動過程中,當(dāng)四邊形的其中一邊長是倍時,求所有滿足條件的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D是等邊△ABCBC邊的延長線上一點(diǎn),且ACCD,以AB為直徑作⊙O,分別交邊ACBC于點(diǎn)E、點(diǎn)F

1)求證:AD是⊙O的切線;

2)連接OC,交⊙O于點(diǎn)G,若AB4,求線段CE、CG圍成的陰影部分的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過點(diǎn)B的反比例函數(shù)解析式為( 。

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,的中點(diǎn),的中點(diǎn),過點(diǎn)的延長線于點(diǎn)

1)求證:;

2)證明:四邊形是菱形;

3)若,,直接寫出菱形的面積.

查看答案和解析>>

同步練習(xí)冊答案