精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,直線a經過正方形ABCD的頂點A,分別過正方形的頂點B、DBFa于點F,DEa于點E,若DE=8,BF=5,則EF的長為__

【答案】13

【解析】試題分析:根據正方形的性質、直角三角形兩個銳角互余以及等量代換可以證得△AFB≌△AED;然后由全等三角形的對應邊相等推知AF=DE、BF=AE,所以EF=AF+AE=13

解:∵ABCD是正方形(已知),

∴AB=AD,∠ABC=∠BAD=90°

∵∠FAB+∠FBA=∠FAB+∠EAD=90°,

∴∠FBA=∠EAD(等量代換);

∵BF⊥a于點F,DE⊥a于點E

Rt△AFBRt△AED中,

∴△AFB≌△AEDAAS),

∴AF=DE=8,BF=AE=5(全等三角形的對應邊相等),

∴EF=AF+AE=DE+BF=8+5=13

故答案為:13

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】1先化簡,再求值:aa-2b+a+b2,其中a=-1,b=;

2)若x2-5x=3,求(x-1)(2x-1-x+12+1的值.

【答案】1原式= 2a2+b2=2+2=4;(2原式=4.

【解析】試題分析:(1)利用完全平方公式展開,化簡,代入求值. (2) 利用完全平方公式展開,化簡,整體代入求值.

:(1原式=a2-2ab+a2+2ab+b2=2a2+b2.

a=-1,b=原式=2+2=4.

2原式=2x2-3x+1-x2+2x+1+1=x2-5x+1=3+1=4.

型】解答
束】
22

【題目】已知化簡(x2+px+8)(x2-3x+q)的結果中不含x2項和x3.

1)求p,q的值.

2x2-2px+3q是否是完全平方式?如果是,請將其分解因式;如果不是,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6 cm,BC=8 cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC三個內角的平分線交于點O,點D在CA的延長線上,且DC=BC,AD=AO,若BAC=80°,則BCA的度數為 _________ 

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】y=kx,是否存在實數k,使得代數式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化簡為x4?若能,請求出所有滿足條件的k的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABE,△BCD均為等邊三角形,點A,B,C在同一條直線上,連接AD,EC,AD與EB相交于點M,BD與EC相交于點N,下列說法正確的有:___________

①AD=EC;②BM=BN;③MN∥AC;④EM=MB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,BC=24cm,P、Q、M、N分別從A、B、C、D出發(fā),沿AD、BC、CB、DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時,運動即停止、已知在相同時間內,若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm,

(1)當x為何值時,點P、N重合;

(2)當x為何值時,以P、Q、M、N為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】蓋房子時,木工師傅常常先在窗框上斜釘一根木條,這是利用三角形的_________性.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線CPAB的中垂線且交ABP,其中AP2CP.甲、乙兩人想在AB上取兩點D、E,使得ADDCCEEB,其作法如下:

作∠ACP、BCP之角平分線,分別交ABD、E,則D、E即為所求;

AC、BC之中垂線,分別交ABD、E,則D、E即為所求.

對于甲、乙兩人的作法,下列判斷何者正確( 。

A. 兩人都正確 B. 兩人都錯誤 C. 甲正確,乙錯誤 D. 甲錯誤,乙正確

查看答案和解析>>

同步練習冊答案