【題目】探究:有一長6cm,寬4cm的矩形紙板,現(xiàn)要求以其一組對邊中點所在直線為軸,旋轉180°,得到一個圓柱,現(xiàn)可按照兩種方案進行操作:

方案一:以較長的一組對邊中點所在直線為軸旋轉,如圖①;

方案二:以較短的一組對邊中點所在直線為軸旋轉,如圖②.

(1)請通過計算說明哪種方法構造的圓柱體積大;

(2)如果該矩形的長寬分別是5cm3cm呢?請通過計算說明哪種方法構造的圓柱體積大;

(3)通過以上探究,你發(fā)現(xiàn)對于同一個矩形(不包括正方形),以其一組對邊中點所在直線為軸旋轉得到一個圓柱,怎樣操作所得到的圓柱體積大(不必說明原因)?

【答案】(1)方案一構造的圓柱的體積大;(2)方案一構造的圓柱的體積大;(3)以較長一組對邊中點所在直線為軸旋轉得到的圓柱的體積大.

【解析】

(1)(2)均可分別計算兩種旋轉方式所得圓柱的體積并進行比較即可;

(3)根據上述兩問的計算結果確定即可

(1)方案一:π×32×4=36π(cm3),

方案二:π×22×6=24π(cm3),

∵36π>24π,

方案一構造的圓柱的體積大;

(2)方案一:π×(2×3=π(cm3),

方案二:π×(2×5=π(cm3),

π>π,

方案一構造的圓柱的體積大;

(3)由(1)、(2),以較長一組對邊中點所在直線為軸旋轉得到的圓柱的體積大.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c經過A(﹣2,0),B(4,0),C(0,3)三點.

(1)求該拋物線的解析式;
(2)在y軸上是否存在點M,使△ACM為等腰三角形?若存在,請直接寫出所有滿足要求的點M的坐標;若不存在,請說明理由;
(3)若點P(t,0)為線段AB上一動點(不與A,B重合),過P作y軸的平行線,記該直線右側與△ABC圍成的圖形面積為S,試確定S與t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ADB、BCD都是等邊三角形,點E,F分別是AB,AD上兩個動點滿足AE=DF連接BF與DE相交于點G,CHBF,垂足為H連接CG若DG=,BG=、滿足下列關系:,則GH=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結論有________(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工藝品廠計劃一周生產工藝品2100個,平均每天生產300個,但實際每天生產量與計劃相比有出入.下表是某周的生產情況 (超產記為正,減產記為負):

(1) 寫出該廠星期一生產工藝品的數(shù)量.

(2) 本周產量最多的一天比最少的一天多生產多少個工藝品?

(3) 請求出該工藝品廠在本周實際生產工藝品的數(shù)量.

(4) 已知該廠實行每周計件工資制,每生產一個工藝品可得60元,若超額完成任務,則超過部分每個可得50元,少生產一個扣80元.試求該工藝廠在這一周應付出的工資總額.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,DAB上的點,過點DBC于點F,交AC的延長線于點E,連接CD,,則下列結論正確的有______ 將所有正確答案的序號都填在橫線上

;;是等邊三角形;,則

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在數(shù)軸上A點表示數(shù),B點表示數(shù),且滿足,

1)點A表示的數(shù)為_______;點B表示的數(shù)為__________;

2)若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,請在數(shù)軸上找一點C,使AC3BC,則C點表示的數(shù)__________;

3)若在原點O處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點B處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設運動的時間為t(秒),請分別表示出甲、乙兩小球到原點的距離(用含t的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結合,研究數(shù)軸我們發(fā)現(xiàn):若數(shù)軸上點A、點B表示的數(shù)分別為a、b,則A,B兩點之間的距離AB=|a﹣b|,線段AB的中點表示的數(shù)為.如:如圖,數(shù)軸上點A表示的數(shù)為﹣2,點B表示的數(shù)為8,則A、兩點間的距離AB=|﹣2﹣8|=10,線段AB的中點C表示的數(shù)為=3,點P從點A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點Q從點B出發(fā),以每秒2個單位長度的速度向左勻速運動.設運動時間為t秒(t>0).

(1)用含t的代數(shù)式表示:t秒后,點P表示的數(shù)為   ,點Q表示的數(shù)為   

(2)求當t為何值時,P、Q兩點相遇,并寫出相遇點所表示的數(shù);

(3)求當t為何值時,PQ=AB;

(4)若點M為PA的中點,點N為PB的中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=12,過點A、D兩點的⊙O與BC邊相切于點E,則⊙O的半徑為

查看答案和解析>>

同步練習冊答案