【題目】△ABC中,AB=12,AC= ,∠B=30°,則△ABC的面積是 .
【答案】21 或15
【解析】解:①如圖1,作AD⊥BC,垂足為點(diǎn)D,
在Rt△ABD中,∵AB=12、∠B=30°,
∴AD= AB=6,BD=ABcosB=12× =6 ,
在Rt△ACD中,CD= = = ,
∴BC=BD+CD=6 + =7 ,
則S△ABC= ×BC×AD= ×7 ×6=21 ;
②如圖2,作AD⊥BC,交BC延長(zhǎng)線于點(diǎn)D,
由①知,AD=6、BD=6 、CD= ,
則BC=BD﹣CD=5 ,
∴S△ABC= ×BC×AD= ×5 ×6=15 ,
故答案為:21 或15 .
由在直角三角形中,30度角所對(duì)的邊是斜邊的一半和余弦的定義,求出AD、BD=ABcosB的值,再由勾股定理求出BC=BD+CD的值,得到S△ABC的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗想用一塊面積為的正方形紙片,沿著邊的方向裁出一塊面積為的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為4:3,他不知道能否裁的出來,正在發(fā)愁,請(qǐng)你用所學(xué)知識(shí)幫小麗分析,能否裁出符合要求的紙片.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為矩形的對(duì)角線,將邊沿折疊,使點(diǎn)落在上的點(diǎn)處,將邊沿折疊,使點(diǎn)落在上的點(diǎn)處.
(1)求證:四邊形是平行四邊形;
(2)若求四邊形的面積及與之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于點(diǎn)A1,
(1)分別計(jì)算:當(dāng)∠A分別為700、800時(shí),求∠A1的度數(shù).
(2)根據(jù)(1)中的計(jì)算結(jié)果,寫出∠A與∠A1之間的數(shù)量關(guān)系___________________.
(3)∠A1BC的角平分線與∠A1CD的角平分線交于點(diǎn)A2,∠A2BC的角平分線與∠A2CD的角平分線交于點(diǎn)A3,如此繼續(xù)下去可得A4,…,∠An,請(qǐng)寫出∠A5與∠A的數(shù)量關(guān)系_________________.
(4)如圖2,若E為BA延長(zhǎng)線上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動(dòng)時(shí),有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠D-∠A1的值為定值.
其中有且只有一個(gè)是正確的,請(qǐng)寫出正確的結(jié)論,并求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B以1cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以2cm/s的速度移動(dòng).若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),在運(yùn)動(dòng)過程中,△PBQ的最大面積是( )
A.18cm2
B.12cm2
C.9cm2
D.3cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解答過程:如圖甲,AB∥CD,探索∠APC與∠BAP、∠PCD之間的關(guān)系.
解:過點(diǎn)P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一條直線的兩條直線互相平行).
∴∠1+∠A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∠2+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如圖乙和圖丙,AB∥CD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠APC與∠BAP、∠PCD之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,折疊△ABC,使點(diǎn)A與點(diǎn)B重合,折痕為DE,若∠DBC=15°,則∠A的度數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC于點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接DE.
(1)求證:DE是半圓⊙O的切線;
(2)若∠BAC=30°,DE=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC∥DE,BF平分∠ABC,DC平分∠ADE,則下列結(jié)論:①∠ACB=∠E;②DF平分∠ADC;③∠BFD=∠BDF;④∠ABF=∠BCD,其中正確的有( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com