【題目】如圖,⊙OABC的外接圓,點OBC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點DBC的平行線與AC的延長線相交于點P

1)求證:PD是⊙O的切線;

2)求證:;

3)若,,求線段DP的長.

【答案】1)見解析;(2)見解析;(315

【解析】

1)先判斷出∠BAC=2BAD,進而判斷出∠BOD=BAC=90°,得出PDOD即可得出結論;

2)先判斷出∠ADB=P,再判斷出∠DCP=ABD,即可證明ABD∽△DCP,進一步可得出結論;

3)首先求出BC=10,從而得出OD=5,作CGDP,則可得四邊形ODGC是正方形,故可得CG=5,由可求出GP=,從而可得結論.

1)如圖,連接OD

BC是⊙O的直徑,

∴∠BAC=90°

AD平分∠BAC,

∴∠BAC=2BAD,

∵∠BOD=2BAD

∴∠BOD=BAC=90°,

DPBC,

∴∠ODP=BOD=90°,

PDOD,

OD是⊙O半徑,

PD是⊙O的切線;

2)∵PDBC,

∴∠ACB=P

∵∠ACB=ADB,

∴∠ADB=P,

∵∠ABD+ACD=180°,∠ACD+DCP=180°

∴∠DCP=ABD,

∴△ABD∽△DCP,

ABCP=BDCD

3)在中,∵,,

,

,

過點,垂足為,則四邊形為正方形,

,

,

,

,

,即,

解得,,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是重慶輕軌10號線龍頭寺公園站入口扶梯建設示意圖.起初工程師計劃修建一段坡度為3:2的扶梯,扶梯總長為米.但這樣坡度大陡,扶梯太長容易引發(fā)安全事故.工程師修改方案:修建、兩段扶梯,并減緩各扶梯的坡度,其中扶梯和平臺形成的135°,從點看點的仰角為36.5°,段扶梯長米,則段扶梯長度約為( )米(參考數(shù)據(jù):,,

A.43B.45C.47D.49

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學全體同學參加了“關懷貧困學生”愛心捐款活動,該校隨機抽查了七、八、九三個年級部分學生捐款情況,將結果繪制成兩幅不完整的統(tǒng)計圖.根據(jù)圖中的信息,解決下列問題:

1)這次共抽查了_______名學生進行統(tǒng)計,其中類所對應扇形的圓心角的度數(shù)為________

2)將條形統(tǒng)計圖補充完整;

3)該校有名學生,估計該校捐款元的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程

1)請判斷該方程實數(shù)根的情況;

2)若原方程的兩實數(shù)根為,且滿足,求p的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線x軸,y軸分別交于點A,B,將△ABO沿直線AB翻折后得到△ABC,若反比例函數(shù)x0)的圖象經(jīng)過點C,則k______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“世界讀書日”前夕,某校開展了“讀書助我成長”的閱讀活動.為了了解該校學生在此次活動中課外閱讀書籍的數(shù)量情況,隨機抽取了部分學生進行調查,將收集到的數(shù)據(jù)進行整理,繪制出兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖信息解決下列問題:

1)求本次調查中共抽取的學生人數(shù);

2)補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,閱讀本書籍的人數(shù)所在扇形的圓心角度數(shù)是   

4)若該校有名學生,估計該校在這次活動中閱讀書籍的數(shù)量不低于本的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是矩形ABCD的對角線的交點,AB15,BC8,直線EF經(jīng)過點O,分別與邊CD,AB相交于點E,F(其中0DE).現(xiàn)將四邊形ADEF沿直線EF折疊得到四邊形ADEF,點AD的對應點分別為A′,D′,過D′作DGCD于點G,則線段DG的長的最大值是_____,此時折痕EF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在雙曲線yk0)上,連接OA,分別以點O和點A為圓心,大于OA的長為半徑作弧,兩弧相交于DE兩點,直線DEx軸于點B,交y軸于點C(0,3),連接AB.若AB1,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,以AC為直徑作⊙OBC于點D,過點DDEAB,垂足為E

1)求證:DE是⊙O的切線;

2)若DE= ,∠C=30°,求的長.

查看答案和解析>>

同步練習冊答案