【題目】如圖,在平面直角坐標(biāo)系中.有拋物線.拋物線經(jīng)過原點,與x軸正半軸交于點A,與其對稱軸交于點B.P是拋物線上一點,且在x軸上方.過點P作x軸的垂線交拋物線于點Q.過點Q作PQ的垂線交拋物線于點(不與點Q重合),連結(jié).設(shè)點P的橫坐標(biāo)為m

(1)求a的值;

(2)當(dāng)拋物線經(jīng)過原點時,設(shè)△與△OAB重疊部分圖形的周長為l

①求的值;

②求l與m之間的函數(shù)關(guān)系式;

(3)當(dāng)h為何值時,存在點P,使以點O、A、Q、為頂點的四邊形是軸對稱圖形?直接寫出h的值

【答案】(1);(2);;(3)h=3或

【解析】

試題分析:(1)把(0,0)代入即可解決問題.

(2)①用m的代數(shù)式表示PQ、QQ′,即可解決問題.

②分0<m≤3或3<m<6兩種情形,畫出圖形,利用相似三角形或銳角三角函數(shù)求出相應(yīng)線段即可解決.

(3),①當(dāng)h=3時,兩個拋物線對稱軸x=3,四邊形OAQQ′是等腰梯形.②當(dāng)四邊形OQ′1Q1A是菱形時,求出拋物線對稱軸即可解決問題.

試題解析:(1)∵拋物線經(jīng)過原點,∴x=0時,y=0,∴9a+4=0,∴;

(2)∵拋物線經(jīng)過原點時,∴h=0,∵,∴

化為;設(shè)P(m,,Q(m,,PQ=,QQ′=2m=;

②如圖1中,當(dāng)0<m≤3時,設(shè)PQ與OB交于點E,與OA交于點F,∵,∠PQQ′=∠BMO=90°,∴△PQQ′∽△BMO,∴∠QPQ′=∠OBM,∵EF∥BM,∴∠OEF=∠OBM,∴∠OEF=∠QPQ′,∴OE∥PQ′,∵,∴EF=,OE=,∴l(xiāng)=OF+EF+OE==4m;

當(dāng)3<m<6時,如圖2中,設(shè)PQ′與AB交于點H,與x軸交于點G,PQ交AB于E,交OA于F,作HM⊥OA于M.

∵AF=6﹣m,tan∠EAF=,∴EF=,AE=,∵tan∠PGF=,PF=,∴GF=,∴AG=,∴GM=AM=,∵HG=HA==,∴l(xiāng)=GH+EH+EF+FG=

綜上所述

(3)如圖3中,①當(dāng)h=3時,兩個拋物線對稱軸x=3,∴點O、A關(guān)于對稱軸對稱,點Q,Q′關(guān)于對稱軸對稱,∴OA∥QQ′,OQ′=AQ,∴四邊形OAQQ′是等腰梯形,屬于軸對稱圖形.

②當(dāng)四邊形OQ′1Q1A是菱形時,OQ′1=OA=6,∵Q′1Q1=OA=6,∴點Q1的縱坐標(biāo)為4,在RT△OHQ′1,中,OH=4,OQ′1=6,∴HQ′1=,∴h=

綜上所述h=3或,點O,A,Q,Q′為頂點的四邊形是軸對稱圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:ax2﹣4ax+4a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用不等號表示大小關(guān)系的式子,叫做.常見的不等號有,,,,這五種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)為加強(qiáng)與家長的溝通,某校在家長會到來之前需印刷《致家長的一封信》等材料以作宣傳,該校的印刷任務(wù)原來由甲復(fù)印店承接,其收費(fèi)y(元)與印刷頁數(shù)x(頁)的函數(shù)關(guān)系如圖所示.

(1)從圖象中可看出:印刷超過500頁部分每頁收費(fèi) 元;

(2)現(xiàn)在乙印刷廠表示:每頁0.15元收費(fèi).另收200元的制版費(fèi),乙印刷廠收費(fèi)y(元)與印刷頁數(shù)x(頁)的函數(shù)關(guān)系為 ;

(3)在給出的坐標(biāo)系內(nèi)畫出(2)中的函數(shù)圖象,并結(jié)合函數(shù)圖象回答印刷頁數(shù)在3000頁左右應(yīng)選擇哪個印刷店?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種植物的主干長出若干數(shù)目的支干,每個支干又長出同樣多數(shù)目的小分支,主干、支干、小分支一共是91個,則每個支干長出的小分支數(shù)目為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(x+y)﹣(x﹣y)的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,AB的垂直平分線交邊ABD點,交邊ACE點,若ABCEBC的周長分別是40cm,24cm,則AB=________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個相似三角形的周長比為4:3,則它們的相似比為( ).

A.4:3B.3:4C.16:9D.9:16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016甘肅省蘭州市)對于一個矩形ABCD及⊙M給出如下定義:在同一平面內(nèi),如果矩形ABCD的四個頂點到⊙M上一點的距離相等,那么稱這個矩形ABCD是⊙M的“伴侶矩形”.如圖,在平面直角坐標(biāo)系xOy中,直線l:交x軸于點M,⊙M的半徑為2,矩形ABCD沿直線運(yùn)動(BD在直線l上),BD=2,AB∥y軸,當(dāng)矩形ABCD是⊙M的“伴侶矩形”時,點C的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案