【題目】如圖,在△ABC中,AB=AC=10,以AB為直徑的⊙O與BC交于點D,與AC交于點E,連OD交BE于點M,且MD=2,則BE長為

【答案】8
【解析】解:連接AD,如圖所示:
∵以AB為直徑的⊙O與BC交于點D,
∴∠AEB=∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
∵OA=OB,
∴OD∥AC,
∴BM=EM,
∴CE=2MD=4,
∴AE=AC﹣CE=6,
∴BE= = ;
故答案為:8.

本題考查了圓周角定理、等腰三角形的性質、勾股定理、三角形中位線定理;熟練掌握圓周角定理,由三角形中位線定理求出CE是解決問題的關鍵.連接AD,由圓周角定理得出∠AEB=∠ADB=90°,由等腰三角形的性質得出BD=CD,由三角形中位線定理得出OD∥AC,CE=2MD=4,求出AE,再由勾股定理求出BE即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④2a+b=0.其中判斷正確的是 . (只填寫正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書超過200元一律打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次中學生田徑運動會上,根據參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據相關信息,解答下列問題:

(1)圖1中a的值為;
(2)求統(tǒng)計的這組初賽成績數(shù)據的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據這組初賽成績,由高到低確定9人進入復賽,請直接寫出初賽成績?yōu)?.65m的運動員能否進入復賽.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,底邊BC為2 ,頂角A為120°的等腰△ABC中,DE垂直平分AB于D,則△ACE的周長為(

A.2+2
B.2+
C.4
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l1:y=x+3與x軸交于點A,與y軸交于點B,且與雙曲線y= 交于點C(1,a).

(1)試確定雙曲線的函數(shù)表達式;
(2)將l1沿y軸翻折后,得到l2 , 畫出l2的圖象,并求出l2的函數(shù)表達式;
(3)在(2)的條件下,點P是線段AC上點(不包括端點),過點P作x軸的平行線,分別交l2于點M,交雙曲線于點N,求SAMN的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是博文學校初三一班慧慧、聰聰兩名學生入學以來10次數(shù)學檢測成績(單位:分).

慧慧

116

124

130

126

121

127

126

122

125

123

聰聰

122

124

125

128

119

120

121

128

114

119

回答下列問題:
(1)分別求出慧慧和聰聰成績的平均數(shù);
(2)分別計算慧慧和聰聰兩組數(shù)據的方差;
(3)根據(1)(2)你認為選誰參加全國數(shù)學競賽更合適?并說明理由;
(4)由于初三二班、初三三班和初三四班數(shù)學成績相對薄弱,學校打算派慧慧和聰聰分別參加三個班的數(shù)學業(yè)余輔導活動,求兩名學生分別在初三二班和初三三班的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,P為邊AB上一點.
(1)如圖1,若∠ACP=∠B,求證:AC2=APAB;

(2)若M為CP的中點,AC=2.
①如圖2,若∠PBM=∠ACP,AB=3,求BP的長;
②如圖3,若∠ABC=45°,∠A=∠BMP=60°,直接寫出BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【探究證明】
(1)某班數(shù)學課題學習小組對矩形內兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關系進行探究,提出下列問題,請你給出證明.
如圖1,矩形ABCD中,EF⊥GH,EF分別交AB,CD于點E,F(xiàn),GH分別交AD,BC于點G,H.求證: = ;
【結論應用】

(2)如圖2,在滿足(1)的條件下,又AM⊥BN,點M,N分別在邊BC,CD上,若 = ,則 的值為
【聯(lián)系拓展】

(3)如圖3,四邊形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,點M,N分別在邊BC,AB上,求 的值.

查看答案和解析>>

同步練習冊答案