【題目】如圖,已知AB是⊙O的直徑,P是BA延長線上一點(diǎn),PC切⊙O于點(diǎn)C,CD⊥AB,垂足為D.
(1)求證:∠PCA=∠ABC;
(2)過點(diǎn)A作AE∥PC交⊙O于點(diǎn)E,交CD于點(diǎn)F,交BC于點(diǎn)M,若∠CAB=2∠B,CF=,求陰影部分的面積.
【答案】(1)詳見解析;(2).
【解析】
(1)如圖,連接OC,利用圓的切線的性質(zhì)和直徑對(duì)應(yīng)的圓周角是直角可得∠PCA=∠OCB,利用等量代換可得∠PCA=∠ABC.
(2)先求出△OCA是等邊三角形,在利用三角形的等邊對(duì)等角定理求出FA=FC和CF=FM,然后分別求出AM、AC、MO、CD的值,分別求出、 、 的值,利用,然后通過計(jì)算即可解答.
解:(1)證明:連接OC,如圖,
∵PC切⊙O于點(diǎn)C,∴OC⊥PC,
∴∠PCA+∠ACO=90,
∵AB是⊙O的直徑,∴∠ACB=∠ACO+OCB=90
∴∠PCA=∠OCB,
∵OC=OB,∴∠OBC=∠OCB,
∴∠PCA=∠ABC;
(2)連接OE,如圖,
∵△ACB中,∠ACB=90,∠CAB=2∠B,
∴∠B=30,∠CAB=60,∴△OCA是等邊三角形,
∵CD⊥AB,∴∠ACD+∠CAD=∠CAD+∠ABC=90,
∴∠ACD=∠B=30,
∵PC∥AE,∴∠PCA=∠CAE=30,∴FC=FA,
同理,CF=FM,∴AM=2CF=,
Rt△ACM中,易得AC=×=3=OC,
∵∠B=∠CAE=30,∴∠AOC=∠COE=60,
∴∠EOB=60,∴∠EAB=∠ABC=30,∴MA=MB,
連接OM,EG⊥AB交AB于G點(diǎn),如圖所示,
∵OA=OB,∴MO⊥AB,∴MO=OA×tan30= ,
∵△CDO≌△EDO(AAS),
∴EG=CD=AC×sin60=,
∴,
同樣,易求,
∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(-4,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,點(diǎn)A與點(diǎn)B關(guān)于y軸對(duì)稱.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)求證:點(diǎn)C為線段AP的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,AC是對(duì)角線,AB=8cm,BC=6cm.點(diǎn)P從點(diǎn)A出發(fā),沿AC方向勻速運(yùn)動(dòng),速度為2cm/s,同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為2cm/s.過點(diǎn)P作PM⊥AD于點(diǎn)M,連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<4),解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)Q在線段AC的中垂線上;
(2)寫出四邊形PQAM的面積為S(cm2)與時(shí)間t的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使S四邊形PQAM:S矩形ABCD=9:50?若存在,求出t的值;若不存在,請(qǐng)說明理由;
(4)當(dāng)t為何值時(shí),△APQ與△ADC相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)D、E、F、G分別為線段AB、OB、OC、AC的中點(diǎn).
(1)求證:四邊形DEFG是平行四邊形;
(2)如圖2,若點(diǎn)M為EF的中點(diǎn),BE:CF:DG=2:3:,求證:∠MOF=∠EFO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,點(diǎn)E、F分別在CD、AD上,CE=DF,BE、CF相交于點(diǎn)G,若圖中陰影部分的面積與正方形ABCD的面積之比為3:4,則△BCG的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC.以C為圓心,CB的長為半徑作弧,交AB于點(diǎn)D.分別以B、D為圓心,大于BD的長為半徑作弧,兩弧交于點(diǎn)E.作射線CE交AB于點(diǎn)M.分別以A、C為圓心,CM、AM的長為半徑作弧,兩弧交于點(diǎn)N.連接AN、CN
(1)求證:AN⊥CN
(2)若AB=5,tanB=3,求四邊形AMCN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形ABCD與雙曲線交于D、E兩點(diǎn),將△OCD沿OD翻折,點(diǎn)C的對(duì)稱C'恰好落在邊AB上,已知OA=3,OC=5,則AE長為()
A. 4B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似但不全等,我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”.
(1)如圖1,在四邊形中,,,,對(duì)角線平分.求證:是四邊形的“相似對(duì)角線”;
(2)如圖2,已知格點(diǎn),請(qǐng)你在正方形網(wǎng)格中畫出所有的格點(diǎn)四邊形,使四邊形是以為“相似對(duì)角線”的四邊形;(注:頂點(diǎn)在小正方形頂點(diǎn)處的多邊形稱為格點(diǎn)多邊形)
(3)如圖3,四邊形中,點(diǎn)在射線:上,點(diǎn)在軸正半軸上,對(duì)角線平分,連接.若是四邊形的“相似對(duì)角線”,,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接中國森博會(huì),某商家計(jì)劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(jià)(元/件)是采購數(shù)量(件)的一次函數(shù),下表提供了部分采購數(shù)據(jù).
采購數(shù)量(件) | 1 | 2 | … |
A產(chǎn)品單價(jià)(元/件) | 1480 | 1460 | … |
B產(chǎn)品單價(jià)(元/件) | 1290 | 1280 | … |
(1)設(shè)A產(chǎn)品的采購數(shù)量為x(件),采購單價(jià)為y1(元/件),求y1與x的關(guān)系式;
(2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的,且A產(chǎn)品采購單價(jià)不低于1200元,求該商家共有幾種進(jìn)貨方案;
(3)該商家分別以1760元/件和1700元/件的銷售單價(jià)售出A,B兩種產(chǎn)品,且全部售完,在(2)的條件下,求采購A種產(chǎn)品多少件時(shí)總利潤最大,并求最大利潤.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com